Agricultural Studies, Vol. 4, Issue 3, Jun  2020, Pages 27-39; DOI: https://doi.org/10.31058/j.as.2020.43003 https://doi.org/10.31058/j.as.2020.43003

Impact of Freeze and Silicone Oil Treatments on Hygroscopic and Chemical Components of Two Fast-Growing Species

Agricultural Studies, Vol. 4, Issue 3, Jun  2020, Pages 27-39.

DOI: https://doi.org/10.31058/j.as.2020.43003

Kufre Edet Okon 1* , Ebenezer Adeyemi Iyiola 2 , Queen Aguma 3 , Ojo Adedeji Robert 4

1 Department of Forestry and Wildlife, Faculty of Agriculture, University of Uyo, Uyo, Nigeria

2 Department of Forestry and Wood Technology, Federal University of Technology, Akure, Nigeria

3 Department of Forestry and Wildlife Management, University of Port Harcourt, Port Harcourt, Nigeria

4 Forestry Development and Utilization Unit, Forestry Research Institute of Nigeria, Oyo, Nigeria

Received: 20 May 2020; Accepted: 10 June 2020; Published: 25 June 2020

Full-Text HTML | Download PDF | Views 97 | Download 58

Abstract

The objective of this work was to study the impacts of freezing and silicone oil treatments in relation to hygroscopic and chemical constituents of two fast-growing (Firmiana simplex L. and Pinus massoniana L.) wood species. Five experiments were carried out and then compared to control: Freezing-treatment (F), freezing-silicone oil treatments (FSOT180 and FSOT210) and silicone oil treatments (SOT180 and SOT210). The freezing-treatment phase was conducted at -22 °C for 168 h and silicone oil treatment phase at 180 and 210 °C for 4 h. Hygroscopic properties and chemical constituent were determined. The hygroscopicity of the treated woods were decreased and their chemical structures were transformed. The high treatment temperature degraded the chemical constituents of the wood and XRD showed that the amorphous cellulose was affected in the treated wood. This study revealed that silicone oil and freezing treatments could be used to improve the wood properties of the selected wood species.

Keywords

Silicone Oil Treatment, Water Absorption, Volumetric Shrinkage, Amorphous Cellulose, Thermal Modification

Copyright

© 2017 by the authors. Licensee International Technology and Science Press Limited. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

References

[1] Ramage, M.H.;  Burridge, H.; Busse-Wicher, M.; Fereday, G.; Reynolds, T.; Shah, D.U.;  Wu, G.; Yu, L.; Fleming, P.; Densley-Tingley, D. The wood from the trees: The use of timber in constructionRenewable and Sustainable Energy Reviews, 2017, 68, 333-359.

[2] Hassani, M.M.; Wittel, F.K.; Ammann, S.; Niemz, P.; Herrmann, H.J. Moisture-induced damage evolution in laminated beechWood science and technology, 2016, 50(5), 917-940.

[3] Hillis, W.E. High temperature and chemical effects on wood stability. Wood Science and Technology, 1984, 18(4), 281-293.

[4] Okon, K.E.; Lin, F.; Chen, Y.; Huang, B. Effect of silicone oil heat treatment on the chemical composition, cellulose crystalline structure and contact angle of Chinese parasol wood. Carbohydrate polymers, 2017, 164179-185.

[5] Okon, K.E.; Lin,F.; Lin, X.; Chen, C.; Chen, Y.; Huang, B. Modification of Chinese fir (Cunninghamia lanceolata L.) wood by silicone oil heat treatment with micro-wave pretreatment. European journal of wood and wood products, 2018, 76(1), 221-228.

[6] Missio, A.L.; Mattos, B.D.; de Cademartori, P.H.; Pertuzzatti, A.; Conte, B.; Gatto, D.A. Thermochemical and physical properties of two fast-growing eucalypt woods subjected to two-step freeze–heat treatments. Thermochimica Acta, 2015, 615:15-22.

[7] Missio, A.L.; Mattos, B.D.; de Cademartori, P.H.; Gatto, D.A. Effects of two-step freezing-heat treatments on Japanese raisintree (Hovenia dulcis Thunb.) wood properties. Journal of Wood Chemistry and Technology, 2016, 36(1), 16-26.

[8] Tiemann, H. Effect of different methods of drying on the strength and hygroscopicity of wood. The kiln drying of lumber, 1920, 256-264.

[9] Lee, S.H.; Ashaari, Z.; Lum, W.C.; Halip, J.A.; Ang, A.F.; Tan, L.P.; Chin, K.L.; Tahir, P.M. Thermal treatment of wood using vegetable oils: A review. Construction and Building Materials, 2018, 181, 408-419.

[10] Cheng, D.; Chen, L.; Jiang, S.; Zhang, Q. Oil uptake percentage in oil-heat-treated wood, its determination by soxhlet extraction, and its effects on wood compression strength parallel to the grain. BioResources, 2013, 9(1),120-131

[11] Dubey, M. K.; Pang, S.; Walker, J. Effect of oil heating age on colour and dimensional stability of heat treated Pinus radiataEuropean Journal of Wood and Wood Products, 2011, 69(2), 255-262.

[12] Umar, I.; Zaidon, A.; Lee, S. H.; Halis, R. Oil-heat treatment of rubberwood for optimum changes in chemical constituents and decay resistance. Journal of Tropical Forest Science, 2016, 88-96.

[13] Wang, J.; Cooper, P. Effect of oil type, temperature and time on moisture properties of hot oil-treated wood. Holz als Roh-und Werkstoff, 2005, 63(6), 417-422.

[14] Ilic, J. Advantages of prefreezing for reducing shrinkage-related degrade in eucalypts: General considerations and review of the literature. Wood Science and Technology, 1995, 29(4), 277-285.

[15] de Cademartori, P.H.G.; Missio, A.L.; Mattos, B.D.; Schneid, E.;  Gatto, D.A. Physical and mechanical properties and colour changes of fast-growing Gympie messmate wood subjected to two-step steam-heat treatments. Wood Material Science & Engineering, 2014, 9(1), 40-48.

[16] Cademartori, P.H.G.D.; Mattos, B.D.; Missio, A.L.; Gatto, D.A. Colour responses of two fast-growing hardwoods to two-step steam-heat treatments. Materials Research, 2014, 17(2), 487-493.

[17] Awoyemi, L.; Femi-Ola, T.; Aderibigbe, E. Pre-freezing as a pre-treatment for thermal modification of wood. Part 2: surface properties and termite resistance. Journal of the Indian Academy of Wood Science, 2010, 7(1-2), 19-24.

[18] ISO 3129. Wood - Sampling methods and general requirements for physical and mechanical testing of small clear wood specimens, International Standard, 2012, 1-6, Switzerland.

[19] Okon, K. E.; Okon, I. K.  Modification of the properties of wood via combination of treatments: Freeze treatment and silicone oil heat treatment - Part 2. Emergent Life Sciences Research, 2018, 4(2), 51-57.

[20] ASTM D 143-14. American  Society  for  Testing  and  Materials,  Standard  Methods  of  Testing  Small Clear Specimen of Timber. Philadelphia, 1987; pp. 48-105.

[21] ASTM D 570 - 98. American Society for Testing and Materials, Standard Test Method for water absorption of plastics. New York, 1999; pp. 1-4.

[22] Cademartori, P.H.G.; dos Santos, P.S.; Serrano, L.; Labidi, J.; Gatto, D.A. Effect of thermal treatment on physicochemical properties of Gympie messmate wood. Industrial Crops and Products2013, 45, 360-366.

[23] Iyiola, E.A.; Olufemi, B.; Owoyemi, J.M.; Fuwape, J.A. Impact of heat treatment on physico-mechanical properties of torrefied Anthocleistha djalonensis wood. Journal of Materials Sciences and Applications, 2017, 3(2), 28-34.

[24] Tjeerdsma, B.; Militz, H. Chemical changes in hydrothermal treated wood: FTIR analysis of combined hydrothermal and dry heat-treated wood. Holz als Roh-und Werkstoff, 2005, 63(2), 102-111.

[25] Jämsä, S.; Viitaniemi, P. Heat treatment of wood–Better durability without chemicals. ed. Proceedings of special seminar held in Antibes, France, 2001.

[26] Boonstra, M.J.; Tjeerdsma, B. Chemical analysis of heat treated softwoods. Holz als Roh-und Werkstoff, 2006, 64(3), 204.

[27] Bhuiyan, T.R.; Hirai, N. Study of crystalline behavior of heat-treated wood cellulose during treatments in water. Journal of Wood Science, 2005, 51(1), 42-47.

[28] Esteves, B.; Graca, J.; Pereira, H. Extractive composition and summative chemical analysis of thermally treated eucalypt wood. Holzforschung, 2008, 62(3), 344-351.

[29] Mattos, B.D.; Lourençon, T.V.; Serrano, L.; Labidi, J.; Gatto, D.A. Chemical modification of fast-growing eucalyptus wood. Wood science and technology, 2015, 49(2), 273-288.

[30] Moharram, M.; Mahmoud, O. MFTIR spectroscopic study of the effect of microwave heating on the transformation of cellulose I into cellulose II during mercerization. Journal of Applied Polymer Scienc, 2008, 107(1), 30-36.

[31] Spiridon, I.; Teaca, C.A.; Bodîrlău, R. Structural changes evidenced by FTIR spectroscopy in cellulose materials after pre-treatment with ionic liquid and enzymatic hydrolysis. BioResources, 2011, 6(1), 400-413.

[32] Esteves, B.; Velez Marques, A.; Domingos, I.; Pereira, H. Chemical changes of heat treated pine and eucalypt wood monitored by FTIR, Maderas. Ciencia y tecnologia, 2013, 15(2), 245-258.

[33] Coates, J. Interpretation of infrared spectra, a practical approach. Encyclopedia of analytical chemistry: applications, theory and instrumentation, 2006.

[34] Pandey, K.K.; Pitman, A.J. FTIR studies of the changes in wood chemistry following decay by brown-rot and white-rot fungi. International biodeterioration & biodegradation, 2003, 52(3), 151-160.

[35] Kotilainen, R.A.; Toivanen, T.J.; Alén, R.J. FTIR monitoring of chemical changes in softwood during heating. Journal of Wood Chemistry and Technology, 2000, 20(3), 307-320.

[36] Özgenç, Ö.; Durmaz, S.; Boyaci, I.H.; Eksi-Kocak, H. Determination of chemical changes in heat-treated wood using ATR-FTIR and FT Raman spectrometry. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2017, 171, 395-400.

[37] Popescu, M.C.; Froidevaux, J.; Navi, P.; Popescu, C.M. Structural modifications of Tilia cordata wood during heat treatment investigated by FT-IR and 2D IR correlation spectroscopy. Journal of Molecular Structure, 2013, 1033, 176-186.

[38] Emmanuel, V.; Odile, B.; Céline, R. FTIR spectroscopy of woods: A new approach to study the weathering of the carving face of a sculpture. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2015, 136, 1255-1259.

[39] Zheng, A.; Jiang, L.; Zhao, Z.; Huang, Z.; Zhao, K.; Wei, G.; Li, H. Impact of torrefaction on the chemical structure and catalytic fast pyrolysis behavior of hemicellulose, lignin, and cellulose. Energy & Fuels, 2015, 29(12), 8027-8034.

[40] Pandey, K.K. A study of chemical structure of soft and hardwood and wood polymers by FTIR spectroscopy. Journal of Applied Polymer Science, 1999, 71(12), 1969-1975.

[41] Kuo, M.L.; McClelland, J.F.; Luo, S.; Chien, P.L.; Walker, R.D.; Hse, C.Y. Applications of infrared photoacoustic spectroscopy for wood samples. Wood and fiber science, 2007, 20(1), 132-145.

[42] Chien, Y. C.; Yang, T. C.; Hung, K. C.; Li, C. C.; Xu, J. W.; Wu, J. H. Effects of heat treatment on the chemical compositions and thermal decomposition kinetics of Japanese cedar and beech wood. Polymer degradation and stability2018, 158, 220 -227.

[43] Kačík, F.; Luptáková, J.; Šmíra, P.; Eštoková, A.; Kačíková, D.; Nasswettrová, A.;  Bubeníková, T. Thermal analysis of heat-treated silver fir wood and larval frass. Journal of thermal analysis and calorimetry, 130(2), 755-762.

[44] Chen, W. H.; Lin, B. J.; Colin, B.; Chang, J. S.; Pétrissans, A.; Bi, X.; Pétrissans, M. Hygroscopic transformation of woody biomass torrefaction for carbon storage. Applied energy, 2018, 231, 768-776.

[45] Xing, D.; Li, J. Effects of heat treatment on thermal decomposition and combustion performance of Larix spp. wood. BioResources, 2014, 9(3), 4274-4287.

[46] Hori, R.; Wada, M. The thermal expansion of wood cellulose crystals. Cellulose, 2005, 12(5), 479.

[47] Wang, X.; Chen, X.; Xie, X.; Wu, Y.; Zhao, L.; Li, Y.; Wang, S. Effects of thermal modification on the physical, chemical and micromechanical properties of Masson pine wood (Pinus massoniana Lamb.). Holzforschung, 2018, 72(12), 1063-1070.

[48] Huang, X.; Kocaefe, D.; Kocaefe, Y.; Boluk, Y.; Pichette, A. Study of the degradation behavior of heat-treated jack pine (Pinus banksiana) under artificial sunlight irradiation. Polymer Degradation and Stability, 2012, 97(7), 1197-1214.

[49] Akgül, M.; Gümüşkaya, E.; Korkut, S.  Crystalline structure of heat-treated Scots pine [Pinus sylvestris L.] and Uludağ fir [Abies nordmanniana (Stev.) subsp. bornmuelleriana (Mattf.)] wood. Wood Science and Technology, 2007, 41(3), 281.

[50] Bhuiyan, M.T.R.; Hirai, N.; Sobue, N. Changes of crystallinity in wood cellulose by heat treatment under dried and moist conditions. Journal of Wood Science, 2000, 46(6), 431-436.

[51] Esteves, B.; Pereira, H. Wood modification by heat treatment: A review. BioResources, 2008, 4(1), 370-404.

[52] Sik, H.; Choo, K.; Zakaria, S.; Ahmad, S.; Yusoff, M.; Chia, C. The influence of drying temperature on the hygroscopicity of rubberwood (Hevea Brasiliensis). Journal of Agricultural Science, 2010, 2(1), 48.

[53] Tarmian, A.; Mastouri, A. Changes in moisture exclusion efficiency and crystallinity of thermally modified wood with aging. iForest-Biogeosciences and Forestry, 2019, 12(1), 92.

[54] Xing, D.; Li, J.; Wang, X.; Wang, S. In situ measurement of heat-treated wood cell wall at elevated temperature by nanoindentation. Industrial crops and products, 2016, 87, 142-149.

Related Articles