Environment, Vol. 4, Issue 1, Jun  2020, Pages 1-15; DOI: https://doi.org/10.31058/j.envi.2020.41001 https://doi.org/10.31058/j.envi.2020.41001

Concentrations of Polychlorinated Biphenyls (PCBs) in Suspected Receptacles and Their Vicinity Soils

Environment, Vol. 4, Issue 1, Jun  2020, Pages 1-15.

DOI: https://doi.org/10.31058/j.envi.2020.41001

Adams Udoji Itodo 1* , Arome Joseph Oguche 1 , Sesugh Ande 1 , Abdullahi Usman 2

1 Department of Chemistry and Centre for Agrochemical Technology & Environmental Research (CATER), Federal University of Agriculture, Abeokuta, Nigeria

2 Department of Chemistry, Nasarawa State University, Keffi, Nigeria

Received: 29 December 2019; Accepted: 3 March 2020; Published: 21 June 2020

Full-Text HTML | Download PDF | Views 55 | Download 33

Abstract

PCBs are versatile and synthetic chlorinated compounds, though its production was banned years ago, the continual use of PCBs in transformer oil and printing ink still persists. PCBs in the environment cause soil contamination and pollution. This study focus on the determination of PCBs in different sources and their vicinity soils in Makurdi Nigeria. GC-MS analysis of PCBs in the soils revealed concentrations in the range of 0.18 - 151.31 ppm. The trend in abundance of PCBs (ppm) and total Cl are as follows; tPCBs (ppm) of WS1 (14.63) > RP2 (3.84) > RS2 (2.88) > DS4 > (2.76) > US6 (2.61) > MS3 (1.35) > CS7 (0.18) > 0.02 (permissible limit). The concentration of transformer oil PCB (TO8 is 151.31 ppm) > 50 ppm (threshold limit). tPCBs with BZ number 138 (31.02 ppm) in TO8 is the most abundant. PCBs with BZ number 153 (0.01 ppm) and BZ number 138 (0.01ppm) in RS2 has the least value. in the long run chronic exposure may cause casinoma in the liver and malignant melanoma. The trend of total number of Cl in the PCB compounds (tCl) follows the order of TO8 (80) > WS1 (67) > RP5 (62) >RS2 (52) > US6 (43) > DS4 (29) > MS3 (18) >5-10 (toxic). They are all toxic and above permissible limit. Chlorine numbers in the range of 5- 10 > CS7 (4) is non-toxic. Analysis of variance revealed a significant difference in the concentration of tPCBs and total number of Cl across the study area. Generally, the significant levels/difference (p< 0.05) of ∑PCBs in the analytical sample when compared to the control soil samples calls for concern.

Keywords

PCB, Transformer, Soil, Printing Press, Chlorine, Biphenyls

Copyright

© 2017 by the authors. Licensee International Technology and Science Press Limited. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

References

[1] Anyasi, R.O.; Atanga, H.I. Biological remediation of polychlorinated biphenyls (PCB) in the environment by microorganisms and plants. African Journal of Biotechnology, 2011, 10 (82), 18916-18938.

[2] Kamba, E.A.; Itodo, A.U.; Ogah, E. A test for solid phase extracted polychlorinated biphenyls (PCBs) levels in transformer oil.  American Journal of Electrical Power and Energy System, 2013, 2(3), 57-65.

[3] UNEP. Chemicals guideline for the identification of PCBs and materials containing PCBs, First issue, Inter-organization program for the sound management of chemicals, 1999; pp. 562-563.

[4] Martinez, H.A.; Rodriquez, G.C.; CastilloD.H. Determination of PCBs in transformers oil using gas chromatography with mass spectrometry and aroclors. Journal of Mexico Chemical Society, 2005, 4263-270.

[5] Bernhard, T.; Petron, S. Analysis of PCB Congeners vs. Arcolors in Ecological Risk Assessment. PCB Congeners in Ecological Risk Asssessment, 2001, 1-7, AR103112-AR103118. Available online: https://clu-in.org/download/contaminantfocus/pcb/analysis-of-pcb-congeners.pdf (accessed on 31 January 2020).

[6] Wang. S. Y.; Hu, J. Determination of dioxin-like polychlorinated biphenyls in soil and moss from Fildes Peninsula, Antarctica. Chinese Science Bulletine, 2012, 57, 992-6.

[7] Bhupander, K.; Virendra, K. V.; Satish, K. S.; Sanjay, K.; Chandra, K.; Sharma, A. B. Assessment of polychlorinated biphenyls and organochlorine pesticides in water samples from the Yamuna River. Journal of Xenobiotics2012, 2(1), e6.

[8] Vicent, T.Caminal, G.; Eljarrat, E.; Barceló, D. Emerging Organic Contaminants in Sludge’s: Analysis, Fate and Biological Treatment. Handbook of Environmental Chemistry, 2013, 241-30.

[9] Borja, J.; Marie-Teleon,  D.; Auresenia, J.; Gallardo, S. Polychlorinated Biphenyls and their biodegradation. Process Biochemistry. 2005, 40, 1999-2013.

[10] Yang, M.; Park, M.S; Lee, H.S. Endocrine disrupting chemicals: Human exposure and health risks. Journal of Environmental Science Health2006, 24, 183- 224.

[11] Stojić, N.; Pucarević, M.; Mrkajić, D.; Kecojević, I. Transformers as a potential for soil contamination. Metabk, 2014, 53(4), 689-692.

[12] Motladiile, S.; Kwaambwa, H.M.; Sichilongo, K. Development and Validation of a Gas Chromatography-Mass Spectrometry Method for the Determination of PCBs in Transformer Oil Samples-Application on Real Samples from Botswana. Journal of Chromatograph Separation Technique, 2011, 2(4), 4172-2157.

[13] Bentum, J.K.;  Dodoo, D.K.; Kwakye, P.K. Accumulation of Metals and Polychlorinated Biphenyls (PCBs) in Soils around Electric Transformers in the Central Region of Ghana. Advances in Applied Science Research, 2012, 3(2), 634-643.

[14] Díaz-MorolesN.E.; Garza-UlloaH.J.; Castro-Ríos R.; Ramírez-VillarrealE.G.; Barbarín-CastilloJ.M.; dela Luz Salazar-CavazosM.; Waksman-de TorresN. A comparison of the performance of two chromatographic and three extraction techniques for the analysis of PAHs in sources of drinking water. Journal of chromatographic science, 2007, 45(2), 57-62.

[15] Bi, X.; Chu, S.; Men, Q.; Xu, X. Movement and retention of Polychlorinated biphenyls in a paddy field of WenTai area in China. Agricultural Ecosystem Environment, 2002, 89 (3), 241-252.

[16] Olayinka, O; Akande, O; Bamgbose, K.; Adetunji, M.T. Physicochemical Characteristics and Heavy Metal Levels in Soil Samples obtained from Selected Anthropogenic Sites in Abeokuta, Nigeria. J. Appl. Sci. Environ. Mgt., 2017, 21 (5), 883-891.

[17] Christian, J.; Larsen E.; Nielsen J.; Boberg M.; Axelstad P.  Evaluation of health hazards by exposure to PCB and proposal of a health-based quality criterion for soilThe Danish Environmental Protection Agency, 2014, 1485. ISBN: 978-87-93026-17-9. Available online: https://www2.mst.dk/Udgiv/publications/2014/03/978-87-93026-17-9.pdf (accessed on 31 January 2020).

[18] Pelitli, V.; Doaǧn, Ӧ.; KӦroǧlu,  H. J. Transformer oils potential for PCBs Contamination. International Journal of Metallurgical and Material Engineering, 2015, 1(114), 2455-2372.

[19] Bogdevich, O.P.; Cadocinicov, O.PPCBs determination in  transformer oil by SPE and GC Analysis. Journal of the  Physical Sciences2004, 3(2), 226.

[20] Itodo, A.U.; Akeju, T.T., Itodo H.U. PAHs in Crude Oil Contaminated Water from Ese-Odo Offshore, Nigeria. Annals of Ecology and Environmental Science, 2019, 3(1), 12-19.

[21] Arowojolu, M.I.; Tongu, S.M.;  Itodo, A.U.; Yinusa, S.T.; Yinusa. Basheeru, K.A.; Mejida, S. PAHs in water samples from a Nigerian bitumen seepage: Gas chromatography- mass spectrometry quantification. Chemical Science International Journal, 2018, 22(2), 1-10.

[22] Itodo, A.U.; Sha’Ato, R.; Arowojolu M.I. Distribution of Polycyclic Aromatic Hydrocarbons (PAHs) in Soil Samples from Regions around Loda-Irele Bitumen Field, Nigeria. Pakistan Journal of Analytical and Environmental Chemistry2018, 19(1), 71-78.

[23] Itodo, A.U.; Sha’Ato, R.; Arowojolu, M.I. Polycyclic aromatic hydrocarbons in water samples from a Nigerian bitumen seepage: Gas chromatography- mass spectrometry quantification. Bangladesh Journal of Scientific and Industrial Research, 2018, 53(4), 319-326.

Related Articles