Applied Physics, Vol. 3, Issue 1, Mar  2020, Pages 1-14; DOI: https://doi.org/10.31058/j.ap.2020.31001 https://doi.org/10.31058/j.ap.2020.31001

Analytical Models of Dark Energy Stars with Quadratic Equation of State

Applied Physics, Vol. 3, Issue 1, Mar  2020, Pages 1-14.

DOI: https://doi.org/10.31058/j.ap.2020.31001

Manuel Malaver 1* , Hamed Daei Kasmaei 2

1 Bijective Physics institute, Idrija, Slovenia; Department of Basic Sciences, Caribbean Maritime University, Catia La Mar, Venezuela

2 Bijective Physics institute, Idrija, Slovenia; Department of Applied Mathematics, Islamic Azad University-Central Tehran Branch, Tehran, Iran

Received: 15 December 2019; Accepted: 15 February 2020; Published: 18 March 2020

Full-Text HTML | Download PDF | Views 45 | Download 27

Abstract

Recent astronomical observations with respect to measurements in distant supernovas, cosmic microwave background and weak gravitational lensing confirm that the Universe is undergoing a phase of accelerated expansion and it has been proposed that this cosmological behavior is caused by a hypothetical dark energy which has a strong negative pressure that allows explain the expanding universe. Several theoretical ideas and models related dark the energy includes the cosmological constant, quintessence, Chaplygin gas, braneworld and tachyonic scalar fields. In this paper, we have obtained new relativistic stellar configurations considering an anisotropic fluid distribution with a charge distribution, which could represents a potential model of a dark energy star. In order to investigate the effect of a quadratic equation of state in this anisotropic model we specify particular forms for the gravitational potential that allow solving the Einstein-Maxwell field equations. For these new solutions we checked that the radial pressure,  metric coefficients, energy density, anisotropy factor, charge density , mass function are well defined and are regular in  the interior of the star. The solutions found can be used in the development of dark energy stars models satisfying all physical acceptability conditions but the causality condition and strong energy condition are violated. We expect that these models have multiple applications in astrophysics and cosmology.

Keywords

Dark Energy, Stellar Configurations, Anisotropic Fluid Distribution, Quadratic Equation of State, Einstein-Maxwell Field Equations, Metric Coefficients

Copyright

© 2017 by the authors. Licensee International Technology and Science Press Limited. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

References

[1]Bak, D.; Kim, C.; Yi, S. Experimental probes of traversable wormholes. J. High Energ. Phys. 2019, 5, DOI:10.1007/JHEP12(2019)005.

[2]Bak, D; Kim, C.; Yi,S. Transparentizing black holes to eternal traversable wormholes. J. High Energ. Phys. 2019,155, DOI:10.1007/JHEP03(2019)155.

[3]Lobo, F.S.N. Stable dark energy stars. Class.Quant.Grav. 2006, 23, 1525, DOI: 10.1088/0264-9381/23/5/006.

[4]Bibi, R.; Feroze, T.; Siddiqui, A. Solution of the Einstein-Maxwell Equations with Anisotropic Negative Pressure as a Potential Model of a Dark Energy Star. Canadian Journal of Physics. 2016, 94, 8, 758, DOI: 10. 1139/cjp-2016-0069.

[5]Malaver, M. Black Holes, Wormholes and Dark Energy Stars in General Relativity. Lambert Academic Publishing, Berlin. ISBN: 978-3-659-34784-9, 2013.

[6]Parsaei, F.; Rastgoo, S. Asymptotically flat wormhole solutions with variable equation-of-state parameter. Phys. Rev. D. 2019, 99, 104037, DOI: 10.1103/PhysRevD.99.104037.

[7]Rahaman, F.; Banerjeey, S; Islam S. Wormholes with quadratic equation of state. Phys. Astron. Int J. 2019, 3, 1, DOI: 10.15406/paij.2019.03.00149.

[8]Schwarzschild, K. Uber das Gravitationsfeld einer Kugel aus inkompressibler Flussigkeit nach der Einsteinschen Theorie. Math.Phys.Tech, 1916, 424-434.

[9]Tolman, R.C. Static Solutions of Einsteins Field Equations for Spheres of Fluid. Phys. Rev.1939, 55, 364-373.

[10]Oppenheimer, J.R.; Volkoff, G. On Massive Neutron Cores. Phys. Rev. 1939, 55, 374-381.

[11]Chandrasekhar, S. The Maximum Mass of Ideal White Dwarfs. Astrophys. J, 1931, 74, 81-82.

[12]Baade, W.; Zwicky, F. On Super-novae. Proc.Nat.Acad.Sci.U.S. 1934, 20, 254-259.

[13] Lobo, F.S.N.; Crawford, P. Stability analysis of dynamic thin shells. Class. Quant. Grav. 2005, 22, 4869-4886, DOI:10.1088/0264-9381/22/22/012

[14]Chan, R.; da Silva, M.A.F.; Villas da Rocha,J.F. On Anisotropic Dark Energy. Mod. Phys. Lett, 2009, A24, 1137-1146, DOI:10.1142/S0217732309028092.

[15]Malaver, M.; Esculpi, M. A Theoretical Model of Stable Dark Energy Stars. IJRRAS, 2013, 14, 26-39.

[16]Malaver, M.; Esculpi, M.; Govender, M. New Models of Dark Energy Stars with Charge Distributions. International Journal of Astrophysics and Space Science, 2019, 7, 27-32, DOI: 10.11648/j.ijass.20190702.12.

[17]Ananda, K.N.; Bruni, M. Cosmo-dynamics and dark energy with a quadratic EoS: anisotropic models, large-scale perturbations and cosmological singularities. Phys. Rev. 2006, D74, 023524, DOI:10.1103/PhysRevD.74.023524.

[18]Parsaei, F.; Rastgoo, S. Wormhole solutions with a polynomial equation-of-state and minimal violation of the null energy condition.

Available online: https://arxiv.org/abs/1909.09899 (accessed on 15 December 2019).

[19]Cosenza, M.; Herrera, L.; Esculpi, M; Witten, L. Some Models of Anisotropic Spheres in General Relativity. J. Math. Phys, 1981, 22, 118.

[20]Gokhroo, M.K.; Mehra, A.L. Anisotropic Spheres with Variable Energy Density in General Relativity. Gen. Relat.Grav. 1994, 26, 75-84.

[21]Esculpi, M.; Malaver, M.; Aloma, E. A Comparative Analysis of the Adiabatic Stability of Anisotropic Spherically Symmetric solutions in General Relativity. Gen. Relat. Grav. 2007, 39(5), 633-652, DOI: 10.1007/s10714-007-0409-3.

[22]Malaver, M. Generalized Nonsingular Model for Compact Stars Electrically Charged. World Scientific News. 2018, 92, 327.

Available online: http://www.worldscientificnews.com/wp-content/uploads/2017/12/WSN-922-2018-327-339.pdf (accessed on 15 December 2019).

[23]Malaver, M. Some new models of anisotropic compact stars with quadratic equation of state. World Scientific News. 2018, 109, 180.

Available online: http://www.worldscientificnews.com/wp-content/uploads/2018/08/WSN-109-2018-180-194-2.pdf (accessed on 15 December 2019).

[24]Chan R.; Herrera, L.; Santos, N.O. Dynamical instability in the collapse of anisotropic matter. Class. Quantum Grav, 1992, 9, L133.

[25]Malaver, M. New Mathematical Models of Compact Stars with Charge Distributions. International Journal of Systems Science and Applied Mathematics. 2017, 2, 93-98, DOI: 10.11648/j.ijssam.20170205.13.

[26]Cosenza, M.; Herrera, L.; Esculpi, M.; Witten, L. Evolution of radiating anisotropic spheres in general relativity. Phys.Rev. D. 1982, 25, 2527-2535.

[27]Herrera, L. Cracking of self-gravitating compact objects. Phys. Lett. A 1992, 165, 206-210.

[28]Herrera, L.; Ponce de Leon J. Perfect fluid spheres admitting a one parameter group of conformal motions. J.Math.Phys. 1985, 26, 778.

[29]Herrera, L.; Nunez, L. Modeling hydrodynamic phase transitions in a radiating spherically symmetric distribution of matter. Astrophysical Journal. 1989, 339, 339-353.

[30]Herrera, L.; Ruggeri, G.J.; Witten, L. Adiabatic Contraction of Anisotropic Spheres in General Relativity. Astrophysical Journal. 1979, 234, 1094-1099.

[31]Herrera, L.; Jimenez, L.; Leal, L.; Ponce de Leon J.; Esculpi, M.; Galina, V. Anisotropic fluids and conformal motions in general relativity. J. Math. Phys, 1984, 25, 3274.

[32]Sokolov. A.I. Phase transitions in a superfluid neutron liquid. Sov. Phys. JETP. 1980, 52, 575-576.

[33]Usov, V.V. Electric fields at the quark surface of strange stars in the color- flavor locked phase. Phys. Rev. D. 2004, 70, 067301, DOI: 10.1103/PhysRevD.70.067301.

[34]Komathiraj, K.; Maharaj,S.D. Classes of exact Einstein-Maxwell solutions. Gen. Rel.Grav. 2008, 39, 2079-2093, DOI: 10.1007/s10714-007-0510-7.

[35]Thirukkanesh, S.; Maharaj, S.D. Charged anisotropic matter with a linear equation of state. Class. Quantum Gravity. 2008, 25, 235001, DOI: 10.1088/0264-9381/25/23/235001.

[36]Maharaj, S.D.; Sunzu, J.M.; Ray, S. Some simple models for quark stars. Eur. Phys J.Plus. 2014, 129, 3, DOI: 10.1140/epjp/i2014-14003-9.

[37]Thirukkanesh, S.; Ragel, F.C. A class of exact strange quark star model. PRAMANA-Journal of physics. 2013, 81, 275-286, DOI: 10.1007/s12043-013-0582-8.

[38]Thirukkanesh, S.; Ragel, F.C. Exact anisotropic sphere with polytropic equation of state. PRAMANA-Journal of physics. 2012, 78, 687-696, DOI: 0.1007/s12043-012-0268-7.

[39]Feroze, T.; Siddiqui, A. Charged anisotropic matter with quadratic equation of state. Gen. Rel. Grav. 2011, 43, 1025-1035, DOI: 10.1007/s10714-010-1121-2.

[40]Feroze, T.; Siddiqui, A. Some Exact Solutions of the Einstein-Maxwell Equations with a Quadratic Equation of State. Journal of the Korean Physical Society. 2014, 65, 944-947, DOI:10.3938/jkps.65.944.

[41]Sunzu, J.M.; Maharaj, S.D.; Ray, S. Quark star model with charged anisotropic matter. Astrophysics. Space.Sci. 2014, 354, 517-524, DOI: 10.1007/s10509-014-2131-4.

[42]Pant, N.; Pradhan, N.; Malaver, M. Anisotropic fluid star model in isotropic coordinates. International Journal of Astrophysics and Space Science. 2015, 3, 1-5, DOI:10.11648/j.ijass.s.20150301.11.

[43]Malaver, M. Strange Quark Star Model with Quadratic Equation of State. Frontiers of Mathematics and Its Applications. 2014, 1, 9-15, DOI: 10.12966/fmia.03.02.2014.

[44]Malaver, M. Charged anisotropic models in a modified Tolman IV spacetime. World Scientific News. 2018, 101, 31.

Available online: http://www.worldscientificnews.com/wp-content/uploads/2018/04/WSN-101-2018-31-43.pdf (accessed on 15 December 2019).

[45]Malaver, M. Charged stellar model with a prescribed form of metric function y(x) in a Tolman VII spacetime. World Scientific News. 2018, 108, 41-52.

Available online: http://www.worldscientificnews.com/wp-content/uploads/2018/08/WSN-108-2018-41-52.pdf (accessed on 15 December 2019).

[46] Malaver, M. Classes of relativistic stars with quadratic equation of state. World Scientific News. 2016, 57, 70-80.

Available online: http://www.worldscientificnews.com/wp-content/uploads/2016/06/WSN-57-2016-70-80.pdf (accessed on 15 December 2019).

[47]Malaver, M; Kasmaei, H.D. Strange Stars Models in the color-flavor locked state. Universal Journal of Physics and Application, DOI: 10.20944/preprints201911.0056.v1.

Available online: https://www.researchgate.net/publication/337055639_Strange_Stars_Models_in_the_Color-Flavor_Locked_State (accessed on 15 December 2019).

[48]Rocha, L.S.; Bernardo, A.; De Avellar, M.G.B.; Horvath, J.E. Exact solutions for compact stars with CFL quark matter.

Available online: https://voxcharta.org/2019/06/27/exact-solutions-for-compact-stars-with-cfl-quark-matter/ (accessed on 15 December 2019).

[49]Durgapal, M.C.; Bannerji, R. New analytical stellar model in general relativity. Phys.Rev. 1983, D27, 328-331.

[50]Ngubelanga, S.A.; Maharaj, S.D.; Ray, S. Compact stars with linear equation of state in isotropic coordinates. Astrophys. Space.Sci. 2015, 357, 40, DOI: 10.1007/s10509-015-2280-0.

Related Articles