Applied Physics, Vol. 1, Issue 1, Jul  2018, Pages 12-20; DOI: 10.31058/j.ap.2018.11002 10.31058/j.ap.2018.11002

A Square-Root Approach for Cosmic Temperature Evolution in the Early Formation of Stars in the Young Universe

Applied Physics, Vol. 1, Issue 1, Jul  2018, Pages 12-20.

DOI: 10.31058/j.ap.2018.11002

Johann Michael Köhler 1*

1 Techn. Univ. Ilmenau, Institute for Micro- Und Nanotechnologies/Institute for Chemistry and Microreaction Technology, Dept. Phys. Chem. and Microreaction Technology, Ilmenau, Germany

Received: 21 June 2018; Accepted: 12 July 2018; Published: 27 July 2018

Full-Text HTML | Download PDF | Views 1833 | Download 1100


In this paper, a simple approach for general temperature decay function in the early phase of cosmic evolution is studied. New findings on the age of early developed galaxies demand for a re-thinking of the fate of young universe. The square-root scenario is compatible with an early aggregation of masses and an early beginning of the formation of galaxies and stars.


Early Developed Galaxies, Young Universe, Linearly Increasing Energy, Square-Root Scenario, Formation of Galaxies and Stars


© 2017 by the authors. Licensee International Technology and Science Press Limited. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


[1] Solanes, J.M; Perea, J.D.; Darriba, L. et al. Forming first-ranked early-type galaxies through hierarchical dissipationless merging. Monthly Notices Royal Astron. Soc. 2016, 461, 321, DOI: 10.1093/mnras/stw1278.

[2] Imara, N.; Loeb, A.; Johnson, B.D., Conroy, C.; Behroozi, P. A model connecting galaxy masses, star formation rates, and dust temperatures across cosmic time. Astrophys. J. 2018, 854, 36, DOI: 10.3847/1538-4357/aaa3df0.

[3] Karwal, T; Kamionkowski, M. Dark energy at early times, Hubble parameter, and string axiverse. Phys. Rev. D, 2016, 94, 103523, DOI: 10.1103/PhysRevD.94.103523.

[4] Choi, K.Y.; Takahashi, T. New bound on low reheating temperature for dark matter in models with early matter domination. Phys. Rev. D, 2017, 96, 041301, DOI: 10.1103/PhysRevD.96.041301.

[5] Erd, D.K.; Feedback in low-mass galaxies in early universe. Nature, 2015, 523, 169-176, DOI: 10.1038/nature14454.

[6] DeBreuck, C. When the universe became dusty. Observations from high-redshift galaxies reveal details of early universe evolution. Science, 2016, 352, 1520-1520, DOI: 10.1126/science.aaf9761.

[7] Visbal, E.; Haiman, Z.; Terrazas, B.; Bryan, G.L.; Barkana, R. High-redshift star formation in a time-dependent Lyman-Werner background. Monthly Notices Royal Astron. Soc. 2014, 107-114, DOI: 10.1093/mnras/stu1710.

[8] Shirazi, M.; Brinchmann, J.; Rahmati, A. Stars were born in significant denser regions in the early universe. Astrophys. J. 2014, 787, 120, DOI: 10.1088/0004-637X/787/2/120.

[9] Dolgov, A.D.; Blinnikov, S.I. Stars and black holes in the very early universe. Phys. Rev. D. 2014, 89, 021301, DOI: 10.1103/PhysRevD.89.021301

[10] Tominaga, N.; Iwamoto, N.; Nomoto, K. Abundance of extremely metal-poor stars and supernova properties in the early universe. Astrophys. J. 2014, 785, 98, DOI: 10.1088/0004-637X/785/2/98.

[11] Sakurai, Y.; Hosokawa, T.; Yoshida, N.; Yorke, H.W. Formation of primordial supermassive stars by burst accretion. Monthly Notices Royal Astron. Soc. 2015, 452, 755-764, DOI: 10.1093/mnras/stv1346.

[12] Chon, S.; Latif, M.A. The impact of ionizing radiation on the formation of a supermassive star in the early universe. Monthly Notices Royal Astron. Soc. 2017, 467, 4293-4303, DOI: 10.1093/mnras/stv.

[13] Bouwens, R. Early star formation detected. Nature, 2018, 557, 312-313, DOI: 10.1038/d41586-018-05114-z.

[14] Hashimoto, T.; Laporte, N.; Mawatari, K. et al. The onset of star formation 250 million years after the Big Bang. Nature, 2018, 557, 392, DOI: 10.1038/s41586-018-0117-z.

[15] Bennett, C.L., Halpern, M., Hinshaw, G. et al. First Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Preliminary Maps and Basic Results. Astrophys. J. Suppl. 2003, 148, 1-27, DOI: 10.1086/377253, arxiv:astro-ph/0302207.

[16] CODATA Value: Planck temperature. The NIST Reference on Constants, Units, and Uncertainty. NIST. Retrieved 2011-10-12.

[17] Chluba, J. Test of the CMB temperature-redshift relation, CMB spectral distortion and why adiabatic photon production is hard. Monthly Notices Royal Astron. Soc. 2014, 443, 1881-1888, DOI: 10.1093/mnras/stu1260.

[18] Lidsz, A.; Malloy, M. On modelling and measuring the temperature of the z similar to 5 intergalactic medium. Astrophys. J. 2014, 788, 175, DOI: 10.1088/0004-637X/788/2/175.

[19] El-Nabulski, R.A. Spontaneous symmetry breaking in the early universe with a negative temperature and a broken Lorentz symmetry. Proc. Natl. Acad. Sci. Ind. Sect. A – Phys. Sci. 2015, 85, 395-399, DOI: 10.1007/s40010-015-0212-6.

[20] DellaRose, L.; Marzo, C.; Urbano, A. On the fate of the standard model at finite temperature. J. High Energy Phys. 2016, 5, 050, DOI: 10.1007/JHEP05(2016)050.

[21] Vieira, J.P.P.; Byrnes, C.T.; Lewis, A. Cosmology with negative absolute temperatures. J Cosmol. Astropart. Phys. 2016, 8, 060, DOI: 10.1088/1475-7516/2016/08/060.

[22] Cirkovic, M.M.; Perovic, S. Alternative explanations of the cosmic microwave background: a historical and an epistemological perspective. Stud. Hist. Phil. Mod. Phys. B 2018, 62, 1-18, DOI: 10.1016/j.shpsb.2017.04.005.

[23] Köhler, J.M. Simple rules for a complex universe. Int. J. Astron., Astrophys. & Space Sci. 2017, 4, 1-5.

[24] F. Hoyle, G. Burbidge, J. V. Narlikar: A quasi-steady state cosmological model with creation of matter. In: The Astrophysical Journal, 1993, 410, 437-457.

[25] Sachs, R., Narlikar, J., Hoyle, F. The quasi-steady state cosmology: Analytical solutions of field equations and their relationship to observations. Astron. Astrophys. 1996, 313, 703-712.

[26] Wien, W. Eine neue Beziehung der Strahlung schwarzer Körper zum zweiten Hauptsatz der Wärmetheorie. Sitzungsber. Kngl. Preußischen Akad. Wiss. Berlin, Verl. d. Kgl. Akad. d. Wiss., Berlin 1893, 55.

Related Articles