Applied Physics, Vol. 1, Issue 1, Jul  2018, Pages 1-11; DOI: 10.31058/j.ap.2018.11001 10.31058/j.ap.2018.11001

Synthesis and Variation Studies for the Magnetic Properties of TM0.15Co0.1Zn0.75O (TM= Ni, Mn)

Applied Physics, Vol. 1, Issue 1, Jul  2018, Pages 1-11.

DOI: 10.31058/j.ap.2018.11001

Sabiu Said Abdullahi 1* , Abdussalam B. Suleiman 1 , Yuksel Koseoglu 2 , Yusuf Shehu 3 , Yasin Celaleddin Durmaz 4 , Ibrahim M. Musa 1 , Haidar Masud Alfanda 5

1 Physics Department, Federal University Dutse, Dutse, Jigawa State, Nigeria

2 Department of Primary Education, Faculty of Education, Suleyman Demirel University, Cunur, Isparta, Turkey

3 Department of Physics, Kano University of Science and Technology, Wudil Kano State, Nigeria

4 Department of Physics, Bilkent University, Bilkent, Ankara, Turkey

5 Department of Physics, Northwest University, Kano, Nigeria

Received: 15 December 2017; Accepted: 9 March 2018; Published: 20 March 2018

Full-Text HTML | Download PDF | Views 2050 | Download 1230


TM0.15Co0.1Zn0.75O nanoparticles with (TM=Ni and Mn) has been successfully synthesized by microwave assisted combustion synthesis method using urea as a fuel. The structural, morphological, compositional and Magnetic properties of these nanoparticles were investigated by X-ray Diffraction Machine (XRD), Scanning Electron Microscopes (FE-SEM JEOL-7001), Energy-Dispersive X-ray Spectroscopy (EDX), and Quantum Design Vibrating Sample Magnetometre (QD-VSM) respectively. The structural properties of both sample showed the formation of Wurtzite structure of ZnO, with nine prominent peaks in which the strong diffraction peaks appear in (100), (002) and (101), respectively, though there is a trace related to the Ni ions observed in the Ni samples. The average sizes of the nanoparticles were estimated using Debye-Scherrer’s equation. There is an increase in the average size between 32.65-34.23nm for Ni ion and a decrease in the size from 32.65-25.71nm for Mn ion. Scanning Electron Microscopes (SEM) showed that smaller crystallites of both samples have sizes smaller than 100nm, no indication of phase separation and little agglomeration was observed. Energy-dispersive X-ray Spectroscopy (EDX) confirmed that all the chemical composition of the samples tallies with the synthesis results. Moreover Magnetic measurement reveal that both samples exhibit a room temperature ferromagnetism though its higher in the sample doped by Ni ions.


Nanoparticles, Zinc Oxide, Dilute Magnetic Semiconductor, Combustion Synthesis Method, Ferromagnetism


© 2017 by the authors. Licensee International Technology and Science Press Limited. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


[1] M.V. Limaye; S.B. Singh; R. Das; P. Poddar; S.K. Kulkarni. Room temperature ferromagnetism in undoped and Fe doped ZnO nanorods : Microwave-assisted synthesis. J. Solid State Chem. 2011, 184(2), 391-400.

[2] Y. Jiang; W. Wang; C. Jing; C. Cao; J. Chu. Sol - gel synthesis, structure and magnetic properties of Mn-doped ZnO diluted magnetic semiconductors,” Mater. Sci. Eng. B, 2011, 176(16), 1301-1306.

[3] S. Chattopadhyay; S. Dutta; A. Banerjee; D. Jana; S. Bandyopadhyay; S. Chattopadhyay; A. Sarkar. Synthesis and characterization of single-phase Mn-doped ZnO. 2009, 404, 1509-1514.

[4] Y. Caglar. Sol - gel derived nanostructure undoped and cobalt doped ZnO : Structural, optical and electrical studies. J. Alloys Compd. 2013, 560, 181-188.

[5] S.K. Mandal; T.K. Nath. Microstructural, magnetic and optical properties of ZnO : Mn ( 0 . 01 ≤ x ≤ 0 . 25) Epitaxial diluted magnetic semiconducting films. Thin Solid Films. 2006, 515, 2535-2541.

[6] J.F. Fern; A.C. Caballero; M. Villegas; S.J. Khatib; M.A. Ba; J.L.G. Fierro; J.L. Costa-kramer; E. Lopez-ponce; M.S. Mart. Structure and magnetism in the Zn – Mn – O system : A candidate for room temperature ferromagnetic semiconductor. 2006, 26, 3017-3025.

[7] V.K. Sharma; M. Najim; A.K. Srivastava; G.D. Varma. Structural and magnetic studies on transition metal ( Mn , Co ) doped ZnO nanoparticles. J. Magn. Magn. Mater. 2012, 324(5), 683-689.

[8] C. Jing; Y. Jiang; W. Bai; J. Chu; A. Liu. Synthesis of Mn-doped ZnO diluted magnetic semiconductors in the presence of ethyl acetoacetate under solvothermal conditions. J. Magn. Magn. Mater. 2010, 322(16), 2395-2400,.

[9] Y. Koseoglu. Structural, magnetic, electrical and dielectric properties of MnxNi 1-x Fe 2O4 spinel nanoferrites prepared by PEG assisted hydrothermal method. ceramic international, 2013, 39, 4221-4230.

[10] Y. Koseglu; F. Alan; M. Tan; R. Yilgin. Low temperature hydrothermal synthesis and characterization of Mn doped cobalt ferrite nanoparticles. 2012, 38, 3625-3634.

[11] S.S. Abdullahi; Y. Koseoglu; C.E. Ndikilar; A.A. Safana; S. Ahmad. Effect of Cu and Co Doping on the structural properties of ZnO nanoparticles. journal of the Nigerian assosiation of Mathematical Physics, 2015, 30, 443-448.

[12] K. Omri; J. El Ghoul; O.M. Lemine; M. Bououdina; B. Zhang; L. El Mir. Magnetic and optical properties of manganese doped ZnO nanoparticles synthesized by sol – gel technique. Superlattices Microstruct. 2013, 60,139-147.

[13] Y. Koseoglu. Enhanced Ferromagnetic Properties of Co-doped ZnO DMS Nanoparticles. Suppercond. 2013, 485-489.

[14] J. Mohapatra; D.K. Mishra; D. Mishra; A. Perumal; V.R.R. Medicherla; D.M. Phase; S.K. Singh. Room temperature ferromagnetism in Co doped ZnO within an optimal doping level of 5 %. Mater. Res. Bull. 2012, 47(6), 1417-1422.

[15] G. Glaspell; P. Dutta; A. Manivannan. A Room-Temperature and Microwave Synthesis of M-Doped ZnO (M = Co, Cr , Fe , Mn & Ni ). Journal of Cluster Science, 2005, 16(4), 523-536.

[16] A. Kaushik; B. Dalela; R. Rathore; V.S. Vats; B.L. Choudhary; P.A. Alvi; S. Kumar; S. Dalela. Influence of Co doping on the structural, optical and magnetic properties of ZnO nanocrystals. J. Alloys Compd. 2013, 578, 328-335.

[17] J. Fu; X. Re-n; S. Yan; Y. Gong; Y. Tan; K. Liang; R. Du; X. Xing; G. Mo; Z. Chen; Q. Cai; D. Sun; Z. Wu. Synthesis and structural characterization of ZnO doped with Co : Impurity. J. Alloys Compd. 2013, 558, 212-221.

[18] S.S. Abdullahi; Y. Koseoglu.; et al. Synthesis and characterization of Mn and Co codoped ZnO nanoparticles. Superlattice and microstructure, 2015, 83, 342-352.

[19] R. Siddheswaran; R.V. Mangalaraja; M. Elana; R.E. Avila; C.E. Jeyanthi. Room temperature ferromagnetism in combustion synthesized nanocrystalline Co, Al co-doped ZnO. J. Alloys Compd. 2013, 581, 146-149.

[20] O.D. Jayakumar; I.K. Gopalakrishnan; C. Sudakar; S.K. Kulshreshtha. Synthesis of manganese doped ZnO single crystals and their magnetization studies. Journal of Crystal Growth, 2006, 294(2), 432-436.

[21] Z. Pan; X. Tian; S. Wu; X. Yu; Z. Li; J. Deng; C. Xiao; G. Hu; Z. Wei. Investigation of structural, optical and electronic properties in Al – Sn co-doped ZnO thin films. Appl. Surf. Sci. 2013, 265, 870-877.

[22] S. Khatoon; T. Ahmad. Synthesis, Optical and Magnetic Properties of Ni-Doped ZnO Nanoparticles. Carbon - Science and Technology, 2012, 2(6), 325-333.

[23] K. Vallalperuman; M. Parthibavarman; S. Sathishkumar; M. Durairaj; K. Thavamani. Synthesis and characterization of Co and Mn doped NiO nanoparticles. Korean Journal of Chemical Engineering, 2014, 31(4), 639-643.

[24] Sharma, P.; Gupta, A.; Rao K.V.; Owens F.J. Origion of ferromagnetism in thin film and nanoparticles of inorganic materials, Natural. Material, 2003, 2, 673.

[25] Y. Köseoğlua; Y.C. Durmaza; R.Yilgin. Rapid synthesis and room temperature ferromagnetism of Ni doped ZnO DMS nanoflakes. Ceramics International. 2014, 40, 10685-10691.

[26] Y. Köseoğlu. Fuel aided rapid synthesis and room temperature ferromagnetism of M0.1Co0.1Zn0.8O (M= Mn, Ni, Fe and Cu) DMS Nanoparticles. Ceramics International. 2016, 42, 9190-9195.

[27] R.N. Ajwafi. Surface defect mediated magnetic interactions and ferromagnetism in Cr/Co Co-doped ZnO nanoparticles. J. Magn. Magn. Mater. 2013, 332, 130-136.

[28] T. Nguyen, V. Canhi. Synthesis of undoped M-doped ZnO (M = Co, Mn) nanopowder in water using microwave irradiation. J. Phys. Conf. Ser. 187, p. 012020 2009

[29] N. Shanmugam; K. Dhanaraj; G. Viruthagiri; K. Balamurugan; K. Deivan. Synthesis and Characterization of surfactant assisted Mn2+ doped ZnO nanocrystals. Arabian Journal of Chemistry, 2016, 9, S758-S764.

[30] G. Vijayaparasath; R. Murugan; S. Asaithambi; P. Sakthivel; T. Mahalingam; G. Ravi. Structural and Magnetic Properties of Ni/Mn Codoped ZnO nanoparticles. AIP Conference Proceeding, 1728, 020650 2016, DOI: 10.1063/1.4946701.

[31] S.A. Ahmed. Structural Optical and Magnetic properties of Mn doped ZnO Samples. Results in Physics, 2017, 7, 604-610.

[32] W. Xianojuan; W. Zhiqiang; Z. Lingling; W. Xuan; Y. Hua; J. Jinlong. Optical and magnetic properties of Fe Doped ZnO nanoparticles obtained by Hydrothermal synthesis. Journal of nanomaterials, 2014, 2014, 1-6.

Related Articles