Data Research, Vol. 2, Issue 1, Feb  2018, Pages 1-17; DOI: 10.31058/j.data.2018.21001 10.31058/j.data.2018.21001

Cryptography Using Quasi Group and Chaotic Maps

Data Research, Vol. 2, Issue 1, Feb  2018, Pages 1-17.

DOI: 10.31058/j.data.2018.21001

Eng. Heba A. Abughali 1* , Mohammed A. Mikki 2

1 Computer Department, Palestine Technical Collage, Deir Elbalah, Palestine

1 Computer Engineering Department, Islamic University, Gaza, Palestine

Received: 28 December 2017; Accepted: 15 January 2018; Published: 2 February 2018

Full-Text HTML | Download PDF | Views 476 | Download 286

Abstract

In this paper a symmetric key (stream cipher mode/ block cipher mode) cryptosystem is proposed, involving chaotic maps and quasi group. The proposed cryptosystem destroys any existing patterns in the input, and also, it maximizes entropy. Moreover, the n-grams illustrate that the proposed cryptosystem is secure against the statistics analysis. Furthermore, Experimental results show that the ciphertext has good diffusion and confusion properties with respect to the plaintext and the key, also the results demonstrate that the block cipher mode gives higher entropy than the steam cipher mode.

Keywords

Cryptography, Chaotic Map, Quasi Group, Block Cipher, Stream Cipher, Entropy, N-Grams, Autocorrelation

Copyright

© 2017 by the authors. Licensee International Technology and Science Press Limited. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

References

[1] JiWon Yoon; Hyoungshick Kim. An image encryption scheme with a pseudorandom permutation based on chaotic maps, Communications in Nonlinear Science and Numerical Simulation, 2010.
[2] Zbigniew Kotulski; Janusz Szczepański. Discrete chaotic cryptography. Ann. Physik. 1997, 6, 381-394.
[3] R. Schmitz; J. Franklin. Use of Chaotic Dynamical Systems in Cryptography. 2001, 338, 429-441.
[4] F. Anstett; G. Millerioux; G. Bloch. Chaotic cryptosystems: Cryptanalysis and identifiability. IEEE Tran. Circuits and Systems I, 2006, 53(12), 2673-2680.
[5] Fangjun Huang; Zhi-Hong Guan. Cryptosystem using Chaotic Keys. Chaos Soliton Fractals, 2005, 23(3), 851-855.
[6] Jean-Charles Faugère; Rune Steinsmo Ødegård; Ludovic Perret; Danilo Gligoroski. Analysis of the MQQ Public Key Cryptosystem. CANS. 2010, 169-183.
[7] E. Ochodková ans V. Snášel. Using Quasigroups for Secure Encoding of File System, Proceedings of the International Scientific NATO PfP/PWP Conference ”Security and Information Protection 2001”, Brno, Czech Republic, 175-181,May, 2001.
[8] T. Ritter. “Orthogonal latin squares, nonlinear balanced block mixers,” Ritter Software Engineering Report, 1998.
[9] N.K. Pareek; Vinod Patidar; K.K. Sud. Discrete chaotic cryptography using external key. Phys Lett A. 2003, 309, 75-82.
[10] G. Álvarez; F. Montoya; M. Romera; G. Pastor. Cryptanalysis of a discrete chaotic cryptosystem using external key. Phys Lett A, 2003, 319, 334-339.
[11] N.K. Pareek a,b, Vinod Patidar A.; K.K. Sud. Cryptography using multiple one-dimensional chaotic maps. Communications in Nonlinear Science and Numerical Simulation, 2005, 10, 715-723.
[12] Jun Wei; Xiaofeng Liao; Kwok-wo Wong; Tsing Zhou. Cryptanalysis of a cryptosystem using multiple one-dimensional chaotic maps. Communications in Nonlinear Science and Numerical Simulation, 2007, 12, 814-22.
[13] Tao Xiang; Kwok-wo Wong; Xiaofeng Liao. An improved chaotic cryptosystem with external key. Communications in Nonlinear Science and Numerical Simulation, 2008, 14, 574-581.
[14] C. Kościenly. Generating quasi groups for cryptographic applications. Int. J. Appl. Math. Computer. Sci. 2002, 12(4), 559-569.
[15] D. Gligoroski; S. Markovski; S.J. Knapskog. Multivariate Quadratic Trap-door Functions Based on Multivariate Quadratic Quasi groups. In Proceedings of the American Conference on Applied Mathematics, (MATH08), Cambridge, Massachusetts, USA, 2008.
[16] M. Satti; S. Kak. Multilevel indexed quasigroup encryption for data and speech. IEEE Trans. on Broadcasting, 2009, 55, 270-281.
[17] A. Mileva; New developments in quasigroup-based cryptography. Multidisciplinary Perspectives in Cryptology and Information Security. IGI-Global, 2014, 286-317.
[18] S. Markovski. Design of crypto primitives based on quasigroups. Quasigroups and Related Systems, 2015, 23, 41-90.
[19] Y. Xu; H. Wang; Y. Li; B. Pei. Image encryption based on synchronization of fractional chaotic systems. Communications in Nonlinear Science and Numerical Simulation, 2014, 19(10), 3735-3744.
[20] M. Ahmad; I.R. Khan; S. Alam. Cryptanalysis of Image Encryption Algorithm Based on Fractional-Order Lorenz-Like Chaotic System. Emerging ICT for Bridging the Future. Springer International Publishing Switzerland, AISC. 2015, 338, 381-388.
[21] Entropy (information theory). Wikipedia. Wikimedia Foundation Inc. Available online: http://en.wikipedia.org/wiki/Entropy (accessed on 20 December 2017).
[22] Analysis, N-Gram. Available online: https://www.cryptool.org/en/cto-cryptanalysis/n-gram-analysis (accessed on 21 December 2017).
[23] N-gram. Wikipedia. Wikimedia Foundation Inc. Available online: http://en.wikipedia.org/wiki/N-gram (accessed on 21 December 2017).
[24] Autocorrelation. Wikipedia. Wikimedia Foundation Inc. Available online: http://en.wikipedia.org/wiki/Autocorrelation (accessed on 21 December 2017).

Related Articles