Nanoscience, Vol. 1, Issue 1, Sep  2018, Pages 12-25; DOI: 10.31058/j.nano.2018.11002 10.31058/j.nano.2018.11002

Effects of Chitosan and Chitosan Nanoparticles on Water Quality, Growth performance, Survival Rate and Meat Quality of the African Catfish, Clarias Gariepinus

Nanoscience, Vol. 1, Issue 1, Sep  2018, Pages 12-25.

DOI: 10.31058/j.nano.2018.11002

Udo, Imefon Udo 1* , Etukudo, Uwana 1 , Anwana, Ubong-Isaac Udo 2

1 Department of Fisheries and Aquatic Environmental Management, Faculty of Agriculture, University of Uyo, Uyo, Nigeria

2 Department of Biochemistry, Faculty of Basic Medical Sciences, University of Uyo, Uyo, Nigeria

Received: 20 December 2017; Accepted: 5 January 2018; Published: 23 January 2018

Download PDF | Views 1200 | Download 720


The culture of African catfish (Clarias gariepinus) is hamstrung by high feed cost, and efforts to reduce it have been geared toward exploiting fishmeal alternatives which are hitherto competed for by both human and livestock. There is a growing need to search for waste products which can save this situation. A 91-day feeding trial was conducted in nine tarpaulin tanks with twenty C. gariepinus fingerlings each of average weight 2.79±0.05 g to check the effect of chitosan and its nanoparticles on growth performance and feed utilization. The basal diet (BD) which served as control was formulated to contain 40% crude protein. Two test diets were formulated to contain BD replaced with 5g kg-1 diet of chitosan (BD+CH) and chitosan nanoparticles (BD+CHN) respectively. These were replicated thrice. Chitosan supplementation was found to significantly (P<0.05) improved daily weight gain, survival and meat quality P<0.05) of C. gariepinus fingerlings while chitosan nanoparticle supplementation significantly improved water quality, daily weight gain, feed utilization, survival as well as body composition. Chitosan nanoparticles from shells of arthropods and shellfish which lay waste globally has the potentials to revolutionize aquaculture. Fish nutritionists as well as farm managers should key into this platform technology.


Chitosan, Nanoparticles, Nutrition, Feed Conversion, Growth Performance, Body Composition


© 2017 by the authors. Licensee International Technology and Science Press Limited. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


[1] Adewumi, A. A.; Olaleye, V. F. Catfish culture in Nigeria: Progress, Prospects and Problems. Afr. J. Agric. Res. 2011, 6(6):1281-1285. DOI: 10.5897/AJAR09.361, Available online: (Accessed on 18 March, 2011).

[2] FAO. The State of World Fisheries and Aquaculture. FAO Fisheries and Aquaculture Department. Food and Agricultural Organization of the United nations. Rome, 2006, pp 180, ISBN 978-92-5-105568-7.

[3] OECD. Advancing the Aquaculture Agenda: Policies to Ensure a Sustainable Aquaculture Sector Workshop Proceedings. Paris, 15-16 April 2010.

[4] Fagbenro, O. A.; Adeparusi, E. O.; Fapohunda, O. O. Feedstuff and dietary substitution for farmed fish in Nigeria. In. Proceeding of the Joint Fisheries Society of Nigeria/ National Institute for Freshwater Fisheries Research/FAO-National special programme for food Society. National Workshop on Fish Feed Development and feeding practices – Aquaculture Ed) held at National Institute for Freshwater Fisheries Research, New Bussa 15th – 19th September 2008, Eyo, A.A. Pp 60 – 72.

[5] Isyagi, N.; Veverica, K. L.; Asiiwme, R.; Daniels, W. H. Manual for the commercial production of the African catfish in Uganda, USAID FISH (Fisheries Investments for sustainable harvest). Pp 222.

[6] Udo, I. U.; Ekanem, S. B.; Ndome, C. B. Determination of optimum inclusion level of some plant and animal protein-rich feed ingredients in least-cost ration for African catfish (Clarias gariepinus) fingerlings using linear programming technique. Int. J. Ocean. Marine Ecol. Sys. 2012, 1(1): 24-35. DOI: 10.3923/ijomes.2012.24.35 Available online: (Accessed on 14 November 2011)

[7] Udo, I. U.; Ndome, C. B.; Asuquo, P. E. Use of stochastic programming in least-cost feed formulation for African catfish (Clarias gariepinus) in semi-intensive culture system in Nigeria. J. Fish. Aquat. Sci. 2011a, 6(4): 447-455.DOI: 10.3923/jfas.2011.447.455, Available online:

[8] Udo, I. U.; Ndome, C. B.; Ekanem, S. B.; Asuquo, P. E. Application of linear programming technique in least-cost ration formulation for African catfish (Clarias gariepinus) in semi-intensive culture system in Nigeria. J. of Fish. Aquat. Sci., 2011b, 6 (4): 429-437. DOI: 10.3923/jfas.2011.429.437, Available online:

[9] Radhika-Rajasree, S. R.; Gayathri, S. Biocompatible Nanocomposite from crab shell waste, preparation, characterization and their possible application. Int. J. Pharm Bio Sci 2014. 5(2): (B) 758-766. Available online:

[10] Jimena, B. D.; Cynthia, S.; Noemi, Z. Chitosan from marine crustaceans: Productive characterization and application. In: Biological Activities and Application of Marine Polysaccharides, Intech publishers. 2017, Pp 39-56.

[11] Luo, L.; Cai, X.; He, C.; Xue, M.; Wu, X.; Cao, H. Immune response, stress resistance and bacterial challenge in juvenile rainbow trouts Oncorhynchus mykiss fed diets containing chitosan-oligosaccharides. Curr. Zool. 2009, 55(6):1-14, ISSN: 1674-5507, Available online:

[12] Ramasamy, H.; Ju, S. K.; Chellam, B.; MoonSoo, H. Dietary supplementation with chitin and chitosan on haematology and innate immune response in Epinephelus bruneus against Philasterides dicentrarchi. Experimental Parasitology 2012: 116-124. DOI: 10.1016/j.exppara.2012.03.020, Available online: (Accessed on 27 March 2012).

[13] Zaki, M.; Salem, M.; Gaber, M.; Nour, A. 2015. Effect of chitosan supplemented diet on survival, growth, feed utilization, body composition and histology of sea Bass (Dicentrarchus labrax). World J. Eng. Technol. 2015, 3: 38-47. DOI: 10.4236/wjet.2015.34C005, Available online: (Accessed on 17 December 2015).

[14] Erkan, C.; Volkan, K.; Banu, K. Nanotechnological applications in aquaculture-seafood industries adverse effect on Nanoparticles on environment. J. Mat. Sc. Eng. 2011, 5: 605-609. Available online: (Accessed on 10 May, 2011).

[15] Wang, Y.; Li, J. Effects of chitosan nanoparticles on survival, growth and meat quality of tilapia, Oreochromis nilotica. Nanotoxicology 2011, 5(3): 425-431. DOI: DOI:10.3109/17435390.2010.530354, Available online: (Accessed on 01 November 2010).

[16] Bolat, Y.; Bilgrin, S.; Gunlu, A.; Iza, L.; Koca, S.; Cetinkaya, S.; Koca, H. Chitin-Chitosan yield of fresh water crab (Potamon potamios Oliver 1804) shell. Pak. Vet. J. 2010, 30: 227-231. ISSN: 2074-7764 (ONLINE), available online: Accessible at:

[17] AOAC. Official Methods of Analysis of the Association of Official Analytical Chemists, 5th ed, Arlington VA. USA. 1990; pp 1298; ISBN:0-935584-42-0.

[18] Morris, D. L. Quantitative determination of carbohydrates with Dreywood’s anthrone reagent. Science 1948, 107:254-255.

[19] Hassid, W. Z; Abraham, S. Chemical procedure for analysis of polysaccharides. In: Colowick, S. P.; Kaplan, N. O. ed. Methods of Enzymology, Vol. 3. Academic Press, New York. 1957, pp. 34-50.

[20] Golterman, H. L. Methods of chemical analysis of fresh waters. In: Golterman, H. L.; Chymo, R. S.; Ohnstad, M. A. M. ed. Methods for Physical and Chemical Analysis of Fresh Waters 2nd ed. Blackwell Science Oxford, 1978, pp 213. ISBN: 0632004592.

[21] APHA. Standard Methods for the Examination of Water and Wastewater of the American Public Health Association, the American Water Works Association and the Water Environment Federation, 20th ed. Washington DC, USA, 1998; pp 1220.

[22] Hepher, B. Nutrition of pond fishes. Cambridge University Press, Cambridge, UK. 1990, pp 388.

[23] SPSS. IBM SPSS Statistics 24, 2016 User’s guide, version 20.

[24] Zar, J. H. Biostatistical analysis. 5th ed. New Jersey, USA: Prentice Hall Inc. 2010, pp, 960, ISBN-13:9780321656865.

[25] Gopalakannan, A.; Venkatesan, A. Immunomodulatory effect of dietary intake of Chitin, Chitosan and Levamisole on the immune system of Cyprinus carpio and control of Aeromonas hydrophila infection in ponds. Aquaculture 2006, 255: 179-187. DOI: 10.1016/j.aquaculture.2006.01.012. Available online: (Accessed on 31 May 2006)

[26] Kiruba, A.; Venkatachalam, R.; Venkatachalam, U. Subramani, M. Effect of chitosan supplemented diet on survival, growth, haematological, Biochemical and immunological response of Indian Major carp Labeo rohita. Int. Res. J. Pharm. 2013, 4(5): 141 – 147. DOI:10.789/2230-8407.04529, available online: (Accessed on 11 May 2013)

[27] Suriya, J.; Sompong, D.; Prawit, S. Effects of Artificial Shelter and Chitosan on Growth Performance of Freshwater Prawn (Macrobrachium lanchesteri de Man, 1911). Pak. J. Biol. Sc. 2015, 18: 173-178. DOI: 10.3923/pjbs.2015.173.178

Available online: (Accessed on 05 August, 2015).

[28] Zhou, X.; Wang, Y.; Gu, Q.; Li, W. Effects of different dietary selenium sources (selenium nanoparticle and selenomethionine) on growth performance, muscle composition and glutathione peroxidase enzyme activity of crucian carp (Carassius auratus gibelio). Aquaculture 2009, 291(1–2): 78-81. DOI: 10.1016/j.aquaculture.2009.03.007, available online: (Accessed on 3 June 2009)

[29] Ringwood, A. H.; McCarthy, M.; Bates, T. C.; Carroll, D. L. The effects of iron and silver nanoparticles on fish and oyster embryos. Mar. Environ. Res. 2010; 69 Suppl: S49-51. DOI: 10.1016/j.marenvres.2009.10.011. Available online: (accessed on 13 November 2009)

[30] Victor, B.; Ramesh, U.; Maridass, M. Effect of dietary beta-chitosan levels on survival and growth of fingerlings of Cyprinus carpio, Catla catla and Cirrhinus mrigala. Fisheries Technology 2003, 40: 5-7.

[31] El-Sayed HS, Barakat KM. Effect of dietary chitosan on challenged Dicentrarchus labrax post larvae with Aeromonas hydrophila, J. Mar. Biol. 2016, 42: 501. DOI: 10.1134/S106307401606004. Available online: (Accessed on 21 January 2017)

[32] Divya, K.; Jisha, M. S. Chitosan nanoparticles preparation and applications. Environ Chem Lett 2017, pp 1–12. DOI: 10.1007/s10311-017-0670-y. available online: (Accessed on 31 October 2017).

[33] Cicek S, Nadaroglu H. The use of nanotechnology in the agriculture. Advances in Nano Research, 2015. 3, 207-223. DOI: (Accessed on December 25, 2015).

[34] Divya, K.; Vijayan, S.; George, T. K.; Jisha, M. S. Antimicrobial Properties of Chitosan Nanoparticles: Mode of Action and Factors Affecting Activity. Fibers and Polymers 2017, 18, 221-230. DOI 10.1007/s12221-017-6690-1.

[35] Sheikhzadeh, N.; Kouchaki, M.; Mehregan, M.; Tayefi-Nasrabadi, H.; Divband, B.; Khataminan, M., Oushani, A. K.; Shabanzadeh. S. Influence of nanochitosan/zeolite composite on growth performance, digestive enzymes and serum biochemical parameters in rainbow trout (Oncorhynchus mykiss). Aquaculture Research 2017, 48(12):5955-5964. DOI: 10.1111/are.13418, Available online: (Accessed on 12 June 2017)

[36] Shiau, S. Y.; Yu, Y. P. Chitin but not chitosan supplementation enhances growth of grass shrimp, Penaeus monodon. J. Nutr. 1998, 128(5) 908-912, Available online: (Accessed on 01 May 1998).

[37] Masume, K. N; Mohammad, R. I; Vahid, T.; Alireza, A. Effect of dietary chitosan on growth performance, hematological parameters, intestinal histology and stress resistance of Caspian kutum (Rutilus frisii kutum Kamenskii, 1901) fingerlings. Fish Physiol. Biochem. 2016, 42(4):1063–1071.DOI: 10.1007/s10695-016-0197-3, available online: (Accessed on 16 January, 2016).

[38] Crane, M.; Handy, R. D; Garrod, I.; Owen, R. Ecotoxicity test methods and Environmental Hazard Assessment for Manufacture Nanoparticles. Ecotoxicology 2008, 17,421-437. DOI: 10.1007/s10646-008-0215-z. Available online: (Accessed on 26 April 2008).

Related Articles