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Abstract:  
The regression expectation maximization (REM) algorithm, which is a variant of 

expectation maximization (EM) algorithm, uses parallelly a long regression model 

and many short regression models to solve the problem of incomplete data. 

Experimental results proved resistance of REM to incomplete data, in which accuracy 

of REM decreases insignificantly when data sample is made sparse with loss ratios up 

to 80%. However, the convergence speed of REM can be decreased if there are many 

independent variables. In this research, we use mixture model to decompose REM 

into many partial regression models. These partial regression models are then unified 

in the so-called semi-mixture regression model. Our proposed algorithm is called 

semi-mixture regression expectation maximization (SREM) algorithm because it is 

combination of mixture model and REM algorithm, but it does not implement totally 

the mixture model. In other words, only mixture coefficients in SREM are estimated 

according to mixture model whereas regression coefficients are estimated by REM. 

The experimental results show that SREM converges faster than REM does although 

the accuracy of SREM is not better than the accuracy of REM in fair tests. 

Keywords: 
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1. Introduction 

1.1. Main Work 

As a convention, regression model is a linear regression function Z = α0 + α1X1 + 

α2X2 + … + αnXn in which variable Z is called response variable or dependent variable 

whereas each Xi is called regression variable, regressor, predictor, regression variable, 

or independent variable. Each αi is called regression coefficient. The essence of 

regression analysis is to calculate regression coefficients from data sample. When 

sample is complete, these coefficients are determined by least squares method [1, pp. 

452-458]. When sample is incomplete, there are some approximation approaches to 

estimate regression coefficients such as complete case method, ad-hoc method, 

multiple imputation, maximum likelihood, weighting method, and Bayesian method 
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[2]. We focus on applying expectation maximization (EM) algorithm into constructing 

regression model in case of missing data with note that EM algorithm belongs to 

maximum likelihood approach. In previous research [3], we proposed a so-called 

Regression Expectation Maximization (REM) algorithm to learn linear regression 

function from incomplete data in which some values of Z and Xi are missing. REM is 

a variant of EM algorithm, which is used to estimate regression coefficients. 

Experimental results in previous research [3] proved that accuracy of REM decreases 

insignificantly whereas loss ratios increase significantly. We hope that REM will be 

accepted as a new standard method for regression analysis in case of missing data 

when there are currently 6 standard approaches such as complete case method, ad-hoc 

method, multiple imputation, maximum likelihood, weighting method, and Bayesian 

method [2]. Here we combine REM and mixture model to improve convergence speed 

of REM. Our proposed algorithm is called Semi-mixture Regression Expectation 

Maximization (SREM) algorithm. Experimental results mentioned later show that 

SREM converges faster than REM although it is not as accurate as REM. Because this 

research is the successive one after our previous research [3], they share some 

common contents related to research survey and experimental design, but we confirm 

that their methods are not coincide although SREM is derived from REM. 

Because SREM is the combination of REM and mixture model whereas REM is a 

variant of EM algorithm, we need to survey some works related to application of EM 

algorithm to regression analysis. Kokic [4] proposed an excellent method to calculate 

expectation of errors for estimating coefficients of multivariate linear regression 

model. In Kokic’s method, response variable Z has missing values. Ghitany, Karlis, 

Al-Mutairi, and Al-Awadhi [5] calculated the expectation of function of mixture 

random variable in expectation step of EM algorithm and then used such expectation 

for estimating parameters of multivariate mixed Poisson regression model in the 

maximization step. Anderson and Hardin [6] used reject inference technique to 

estimate coefficients of logistic regression model when response variable Z is missing 

but characteristic variables (regressors Xi) are fully observed. Anderson and Hardin 

replaced missing Z by its conditional expectation on regressors Xi where such 

expectation is logistic function. Zhang, Deng, and Su [7] used EM algorithm to build 

up linear regression model for studying glycosylated hemoglobin from partial missing 

data. In other words, Zhang, Deng, and Su [7] aim to discover relationship between 

independent variables (predictors) and diabetes. 

Besides EM algorithm, there are other approaches to solve the problem of 

incomplete data in regression analysis. Haitovsky [8] stated that there are two main 

approaches to solve such problem. The first approach is to ignore missing data and to 

apply the least squares method into observations. The second approach is to calculate 

covariance matrix of regressors and then to apply such covariance matrix into 

constructing the system of normal equations. Robins, Rotnitzki, and Zhao [9] 

proposed a class of inverse probability of censoring weighted estimators for 

estimating coefficients of regression model. Their approach is based on the 

dependency of mean vector of response variable Z on vector of regressors Xi when Z 

has missing values. Robins, Rotnitzki, and Zhao [9] assumed that the probability λit(α) 

of existence of Z at time point t is dependent on existence of Z at previous time point 

t–1 but independent from Z. Even though Z is missing, the probability λit(α) is also 

determined and so regression coefficients are calculated based on the inverse of λit(α) 

and Xi. The inverse of λit(α) is considered as weight for complete case. Robins, 

Rotnitzki, and Zhao used additional time-dependent covariates Vit to determine λit(α). 
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In the article “Much ado about nothing: A comparison of missing data methods and 

software to fit incomplete data regression models”, Horton and Kleinman [2] 

classified 6 methods of regression analysis in case of missing data such as complete 

case method, ad-hoc method, multiple imputation, maximum likelihood, weighting 

method, and Bayesian method. EM algorithm belongs to maximum likelihood method. 

According to complete case method, regression model is learned from only non-

missing values of incomplete data [2, p. 3]. The ad-hoc method refers missing values 

to some common value, creates an indicator of missingness as new variable, and 

finally builds regression model from both existent variables and such new variable [2, 

p. 3]. Multiple imputation method has three steps. Firstly, missing values are replaced 

by possible values. The replacement is repeated until getting an enough number of 

complete datasets. Secondly, some regression models are learned from these complete 

datasets as usual [2, p. 4]. Finally, these regression models are aggregated together. 

The maximum likelihood method aims to construct regression model by maximizing 

likelihood function. EM algorithm is a variant of maximum likelihood method, which 

has two steps such as expectation step (E-step) and maximization step (M-step). In E-

step, multiple entries are created in an augmented dataset for each observation of 

missing values and then probability of the observation is estimated based on current 

parameter [2, p. 6]. In M-step, regression model is built from augmented dataset. The 

REM algorithm proposed in this research is different from the traditional EM for 

regression analysis because we replace missing values in E-step by expectation of 

sufficient statistics via mutual balance process instead of estimating the probability of 

observation. The weighting method determines the probability of missingness and 

then uses such probability as weight for the complete case. The aforementioned 

research of Robins, Rotnitzki, and Zhao [9] belongs to the weighting approach. 

Instead of replacing missing values by possible values like imputation method does, 

the Bayesian method imputes missing values by the estimation with a prior 

distribution on the covariates and the close relationship between the Bayesian 

approach and maximum likelihood method [2, p. 7]. 

1.2. Related Studies 

Recall that SREM is the combination of REM and mixture model and so we need to 

survey other works related to regression model with support of mixture model. As a 

convention, such regression model is called mixture regression model. In literature, 

there are two approaches of mixture regression model: 

- The first approach is to use logistic function to estimate the mixture 

coefficients. 

- The second approach is to construct a joint probability distribution as product 

of the probability distribution of response variable Z and the probability distribution 

of independent variables Xi. 

According to the first approach [10], the mixture probability distribution is 

formulated as follows: 

 ( | )  ∑     ( |  
     

 )

 

   

 (1) 

Where Θ = (αk, σk
2
)

T
 is compound parameter whereas αk and σk

2
 are regression 

coefficients and variance of the partial (component) probability distribution Pk(Z|αk
T
X, 

σk
2
). Note, mean of Pk(Z|αk

T
X, σk

2
) is αk

T
X and mixture coefficients are ck. In the first 
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approach, regression coefficients αk are estimated by least squares method whereas 

mixture coefficients are estimated by support of logistic function as follows [10, p. 4]: 

   
   (  ( |  
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The mixture regression model is: 

 ̂  ∑     
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According to the second approach, the joint distribution is defined as follows [11, p. 

4]: 
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Where αk are regression coefficients and σk
2
 is variance of the conditional 

probability distribution Pk(Z|αk
T
X, σk

2
) whereas μk and Σk are mean vector and 

covariance matrix of the prior probability distribution Pk(X| μk, Σk), respectively. The 

mixture regression model is [11, p. 6]: 
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Where, 
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The joint probability can be defined by different way as follows [12, p. 21], [13, p. 

24], [14, p. 4]: 
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Where mk(X) and σk
2
 are mean and variance of Z given the conditional probability 

distribution Pk(Z|mk(X), σk
2
) whereas μkX and ΣkX are mean vector and covariance 

matrix of X given the prior probability distribution Pk(X| μk, Σk). When μkX and ΣkX are 

calculated from data, other parameters mk(X) and σk
2
 are estimated for each k

th
 

component as follows [12, p. 23], [13, p. 25], [14, p. 5]: 

  ( )             
  (     )

  
              

      

 (8) 

For each k
th

 component, μkZ is sample mean of Z, ΣkZX is vector of covariances of Z 

and X, and ΣkZZ is sample variance of Z. The mixture regression model becomes [13, p. 

25]: 
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Where, 
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Grün & Leisch [15] mentioned the full application of mixture model into regression 

model in which regression coefficients are determined by inverse function of mean of 

conditional probability distribution as follows: 

 ( | )  ∑     ( |     
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In general, the ideology of combination of regression analysis and mixture model 

which produces mixture regression is not new, but our proposed SREM is different 

from other methods in literature because of followings: 

- SREM does not use the joint probability distribution. In other words, SREM 

does not concern the probability distribution of independent variables Xi. 

- Variance and mean of the conditional probability Pk(Z|αk
T
X, σk

2
) in SREM are 

not estimated by mixture model. They are instead estimated by one-time 

balance process of REM. SREM also does not use logistic function to estimate 

mixture coefficients as the first approach does. However, SREM is similar to 

the first approach most because both SREM and the first approach use the 

conditional probability distribution to estimate mixture coefficients except that 

SREM takes advantages of the mean of component probabilities whereas the 

first approach takes advantages of logistic function. 

- SREM does not re-compute mixture coefficients when evaluating regression 

function. 

- Mixture regression models in literature are learned from complete data whereas 

SREM supports incomplete data. 

In general, SREM does not implement totally mixture model because only mixture 

coefficients in SREM are estimated by the estimation process of mixture model. In 

this research, we do not compare SREM with other mixture regression methods 

because the purpose of SREM is different from the purpose of mixture regression 

model. SREM aims to speed up the convergence of REM in case of missing data 

whereas mixture regression model aims to improve accuracy of regression analysis in 

case that data varies complicatedly with many trends. At the first stage of this research, 

I aim to decompose REM by SREM with hope that SREM is more accurate than 

REM in fair testing. Unexpectedly, the accuracy of SREM is not better than the 

accuracy of REM in fair tests but SREM converges faster than REM. Because speed 

is a significant aspect of an algorithm when data is large, I write this paper as a 

contribution of SREM. I guesstimate that SREM can be worse than full mixture 

regression model when data is complete and varies in many trends. On the other hand, 

full mixture model combined with REM will be better than SREM when data is 

incomplete and varies in many trends. However, we need an experimental research to 
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assert this assumption. The methodology of SREM is described in section 2. Section 3 

focuses on experimental results. Section 4 is the conclusion. 

2. Methodology 

The probabilistic Mixture Regression Model (MRM) is a combination of normal 

mixture model and linear regression model. In MRM, the probabilistic Entire 

Regression Model (ERM) is sum of K weighted probabilistic Partial Regression 

Models (PRMs). Equation (12) specifies MRM [16, p. 3]. 
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distribution Pk(zi|Xi, αk, σk
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Xi and variance σk
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The parameter αk = (αk0, αk1,…, αkn)
T
 is called the k

th
 Partial Regression Coefficient 

(PRC) and Xi = (1, xi1, xi2,…, xin)
T
 is data vector. Each xij in every PRM is called a 

regressor, predictor, or independent variable. 

In equation (12), each mixture coefficient ck is the prior probability that any zi 

belongs to the k
th

 PRM. Let Y be random variable representing PRMs, Y = 1, 2,…, K. 

The mixture coefficient ck is also called the k
th

 weight, which is defined by equation 

(14). Of course, there are K mixture coefficients, K PRMs, and K PRCs. 

    (   ) (14) 

For each k
th

 PRM, suppose each        has an inverse regression model (IRM) xij 

= βkj0 + βkj1zi. In other words, xij now is considered as the random variable conforming 

to normal distribution according to equation (15) [17, p. 8]. 
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Where βkj = (βkj0, βkj1)
T
 is an inverse regression coefficient (IRC) and (1, zi)

T
 

becomes an inverse data vector. The mean and variance of each xij with regard to the 

inverse distribution Pkj(xij|zi, βkj) are βkj
T
(1, zi)

T
 and τkj

2
, respectively. Of course, for 
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each k
th

 PRM, there are n IRMs Pkj(xij|zi, βkj) and n associated IRCs βkj. Totally, there 

are n*K IRMs associated with n*K IRCs. 

In this research, we focus on estimating the entire parameter Θ = (ck, αk, σk
2
, βkj)

T
 

where k is from 1 to K. In other words, we aim to estimate ck, αk, σk
2
, and βkj for 

determining the ERM in case of missing data. As a convention, let Θ
*
 = (ck

*
, αk

*
, (σk

2
)
*
, 

βkj
*
)

T
 be the estimate of Θ = (ck, αk, σk

2
, βkj)

T
, respectively. Let D = (X, Z) be collected 

sample in which X is a set of regressors and Z is a set of outcome variables plus 

values 1, respectively [17, p. 8] with note that both X and Z are incomplete. In other 

words, X and Z have missing values. As a convention, let zi
–
 and xij

–
 denote missing 

values of Z and X, respectively. 
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The expectation of sufficient statistic zi regard to the k
th

 PRM Pk(zi|Xi, αk, σk
2
) is 

specified by equation (17) [3]. 
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Where xi0=1 for all i. The expectation of the sufficient statistic xij with regard to 

each IRM Pkj(xij|zi, βj) of the k
th

 PRM Pk(zi|Xi, αk, σk
2
) is specified by equation (18) [3]. 
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Please pay attention to equations (17) and (18) because missing values of data X 

and data Z will be estimated by these expectations later. By applying sample D into 

equations (12) and (13) and using maximum likelihood estimation (MLE) method [17, 

pp. 8-9], we retrieve equation (19) to estimate αk
*
, βkj

*
 [1, p. 457], and (σk

2
)

*
 for each 

k
th

 PRM where X, Z, Z, Xi, and Xj are specified in equation (16). Appendix A1 is the 

proof of equation (19). 
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From sample D, the optimal regression coefficients (αk
*
, (σk

2
)

*
) and βkj

*
 estimated 

by equation (19) whereas the optimal mixture coefficient ck
*
 for each k

th
 PRM is 

estimated by equation (20) as follows [16, p. 7]: 
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Note, each optimal PRM Pk(zi|Xi, αk
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Because X and Z are incomplete, we apply expectation maximization (EM) 

algorithm into estimating Θ
*
 = (ck

*
, αk

*
, (σk

2
)

*
, βkj

*
)

T
. According to [18], EM algorithm 

has many iterations and each iteration has expectation step (E-step) and maximization 

step (M-step) for estimating parameters. Given current parameter Θ
(t)

 = (ck
(t)

, αk
(t)

, 

(σk
2
)

(t)
, βkj

(t)
)

T
 at the t

th
 iteration, missing values zi

–
 and xij

–
 are calculated in E-step so 

that X and Z become complete. In M-step, the next parameter Θ
(t+1)

 = (ck
(t+1)

, αk
(t+1)

, 

(σk
2
)

(t+1)
, βkj

(t+1)
)

T
 is determined by equations (19) and (20) and the complete data X 

and Z. 

The most important problem in our research is how to estimate missing values zi
–
 

and xij
–
. Recall that, for each k

th
 PRM, every missing value zi

–
 is estimated as the 

expectation based on the current parameter αk
(t)

, according to equation (17) [3]. 
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As a result, equation (22) is used to estimate or fulfill missing values for each k
th

 

PRM [3]. 
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In previous research, we proposed a so-called Regression Expectation 

Maximization (REM) which is a variant of EM algorithm for estimating αk
*
 and βkj

*
. 

Equation (22) is used in the E-step of REM to fulfill missing values. However, REM 

does not support mixture model. Here we proposed a so-called Semi-mixture 

Regression Expectation Maximization (SREM) which is a variant of REM, in which 

M-step is modified to calculate the optimal mixture coefficient ck
*
. SREM is 

described in Table 1. We will explain later why SREM does not conform fully to 

mixture model although it supports mixture model. 

Table 1. Semi-mixture Regression Expectation Maximization (SREM) Algorithm. 

1. E-step: Missing values zi
–
 and xij

–
 for each k

th
 PRM are fulfilled by equation (22) given current 

parameter Θ
(t)
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2. M-step: The next parameter Θ
(t+1)

 is determined by equations (19), (20), and (21) and the 

complete data (Xk, Zk) fulfilled in E-step. Please pay attention that each k
th

 PRM owns a 

particular complete data (Xk, Zk). In other words, original sample (X, Z) has K complete 

versions (Xk, Zk) fulfilled in E-step for K PRMs. Note, such K complete versions are changed 

over each iteration. 
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Note that Zk is Z that belongs to Zk, Xki is Xi that belongs to Xk, Xkj is Xj that belongs to Xk, and 

zki is zi that belongs to Zk. The next parameter Θ
(t+1)

 becomes current parameter in the next 

iteration. 
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EM algorithm stops if at some t
th

 iteration, we have Θ
(t)

 = Θ
(t+1)

 = Θ
*
. At that time, 

Θ
*
 = (ck

*
, αk

*
, (σk

2
)

*
, βkj

*
) is the optimal estimate of EM algorithm. Note, Θ

(1)
 at the 

first iteration is initialized arbitrarily. Here SREM stops if ratio deviation between Θ
(t)

 

and Θ
(t+1)

 is smaller than a small enough terminated threshold ε > 0 or SREM reaches 

a large enough number of iterations. The smaller the terminated threshold is, the more 

accurate SREM is. SREM uses both the terminated threshold ε = 0.1% = 0.001 and 

the maximum number of iterations (10000). The maximum number of iterations 

prevents SREM from running for a long time. 

In traditional Gaussian mixture model, variances (σk
2
)

(t+1)
 and means μk

(t+1)
 are 

estimated by different way based on ck
(t)

 and PRMs. Therefore, our model is called 

semi-mixture regression model when only ck
(t+1)

 is estimated by PRMs. The reason is 

that (σk
2
)

(t+1)
 and αk

(t+1)
 were optimized by maximum likelihood estimation (MLE) 

method and it may be overfitting or redundant to re-estimate (σk
2
)

(t+1)
 and αk

(t+1)
 by 

Gaussian mixture model. As a result, we save computation cost by estimating (σk
2
)
*
 

and ck
*
 after EM process finished. In other words, (σk

2
)

(t+1)
 and ck

(t+1)
 are not re-

computed many times at E-step of every iteration and so (σk
2
)

*
 and ck

*
 are computed 

only one time after EM process finished, according to equation (23). 
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Note that Zk is Z that belongs to Zk, Xki is Xi that belongs to Xk, and zki is zi that 

belongs to Zk where (Xk, Zk) is owned by the k
th

 PRM, which the k
th

 version of the 

original sample (X, Z). 

We use the complete case method mentioned in [2, p. 3] to improve the 

convergence of SREM. The parameters (αk
(1)

, βkj
(1)

)
T
 at the first iteration of EM 

process are initialized in proper way instead that they are initialized in arbitrary way 

[19]. Let Xk’ be the complete matrix, which is created by removing all rows whose 

values are missing from Xk. Similarly, let Zk’ be the complete matrix, which is created 

by removing rows whose weights are missing from Zk. The advanced parameters (αk
(1)

, 

βkj
(1)

)
T
 are initialized by equation (24). 
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Where Zk’ is the complete vector of non-missing outcome values for each k
th

 PRM 

and Xkj’ is the complete column vector of non-missing regressor values for each k
th

 

PRM. Equation (24) is a variant of equation (19) where Xk, Zk, Xkj, and Zk are replaced 

by Xk’, Zk’, Xkj’, and Zk’. 

The evaluation of SREM is different from traditional regression model. It follows 

mixture model. For example, given input data vector X0 = (x01, x02,…, x0n), let z1, z2,…, 

zK are values evaluated from K PRMs, we have: 



VOLUME 1, 2019 

DOI: 10.31058/j.adp.2019.11001 

Submitted to Adaptation and Personalization, page 11-20                                              http://www.itspoa.com/journal/adp 

   (  
 )    ∑   

    

 

   

 

Where x00 = 1. The final evaluation z is calculated based on mixture coefficients as 

seen in equation (25). 
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Following is the proof of equation (25). From equation (12), let  ̂ be the estimate of 

response variable z, we have: 
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Equation (25) is the semi-mixture regression model where mixture coefficients αkj
*
 

are resulted from the EM process of SREM shown in Table 1 and ck
*
 is calculated by 

equation (23). Note, semi-mixture regression model does not re-compute mixture 

coefficients ck
*
 when evaluating z from X0. In other words, after SREM finished, ck

*
 

are fixed. 

3. Results and Discussions 

We use two data samples for testing SREM. The first one is the gestational dataset 

of 1027 cases in which each case includes ultrasound measures (regressors) and fetus 

weight (response variable). Ultrasound measures are bi-parietal diameter (bpd), head 

circumference (hc), abdominal circumference (ac), and fetal length (fl). The unit of 

bpd, hc, ac, and fl is millimeter whereas the unit of fetal weight is gram. Ho and Phan 

[20], [21] collected the ultrasound measure sample of pregnant women at Vinh Long 

General Hospital – Vietnam with obeying strictly all medical ethical criteria. These 

women and their husbands are Vietnamese. Their periods are regular and their last 

periods are determined. Each of them has only one alive fetus. Fetal age is from 28 

weeks to 42 weeks. Delivery time is not over 48 hours since ultrasound scan. 

The second sample is the dataset which contains 9568 data points collected from a 

Combined Cycle Power Plant (CCPP) [22]. Regressors in CCPP dataset are hourly 

average Ambient Temperature (AT), Ambient Pressure (AP), Relative Humidity (RH) 

and Exhaust Vacuum (V) to predict the net hourly electrical energy output (PE) as 

response variable. AT is in the range 1.81°C and 37.11°C. AP is in the range 992.89-

1033.30 millibar. RH is in the range 25.56% to 100.16%. V is in the range 25.36-

81.56 cm Hg. PE is in the range 420.26-495.76 MW. 

In general, we have two samples such as gestational sample and CCPP sample. The 

dataset is split separately into one training dataset (50% sample) and one testing 

dataset (50% sample). Later on, the training dataset is made sparse with loss ratios 

10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, and 90%, which is similar to our 

previous research [19]. Missing values are made randomly regardless of regressors or 

response variable. For example, the gestational training dataset (50% gestational 

sample) has 50%*1027 ≈ 513 rows and each row has 5 columns (bpd, hc, ac, fl, 

weight) and so the training dataset has 513*5 = 2565 cells. If loss ratio is 10%, there 

are only 10%*2565 ≈ 256 missing values which are made randomly among such 2565 

cells. In other words, the incomplete training dataset with loss ratio 10% has 2565 – 
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256 = 2309 non-missing values. Of course, the testing dataset (50% sample) is not 

made sparse. Each pair of incomplete training dataset and testing dataset is called 

testing pair. There are ten testing pairs for each sample. As a convention, the origin 

testing pair which has no missing value in training dataset is the 0
th

 pair. The 0
th

 pair 

is called complete pair whereas the 1
st
, 2

nd
, 3

rd
, 4

th
, 5

th
, 6

th
, 7

th
, 8

th
, and 9

th
 pairs are 

called incomplete pairs. 

Firstly, we test SREM with gestational sample. Table 2 [19] shows ten testing pairs 

of gestational sample. 

Table 2. Ten testing pairs of gestational sample.  

Pair Training dataset Testing dataset Loss ratio 

0 Ges.sample.base Ges.sample.test 0% 

1 Ges.sample.base.0.1.miss Ges.sample.test 10% 

2 Ges.sample.base.0.2.miss Ges.sample.test 20% 

3 Ges.sample.base.0.3.miss Ges.sample.test 30% 

4 Ges.sample.base.0.4.miss Ges.sample.test 40% 

5 Ges.sample.base.0.5.miss Ges.sample.test 50% 

6 Ges.sample.base.0.6.miss Ges.sample.test 60% 

7 Ges.sample.base.0.7.miss Ges.sample.test 70% 

8 Ges.sample.base.0.8.miss Ges.sample.test 80% 

9 Ges.sample.base.0.9.miss Ges.sample.test 90% 

SREM may be better than REM if SREM has a large enough number of PRMs and 

each PRM has many enough regressors. Thus, for fair testing, the number of PRMs in 

SREM is equal to the number of regressors and each PRM has only one regressor. 

Table 3 shows ten resulted regression models of REM corresponding to ten testing 

pairs, given gestational sample. 

Table 3. Ten resulted regression models of REM given gestational sample.  

Pair Regression model 

0 weight = -5686.8907 + 46.2369*(bpd) + 1.7148*(hc) + 14.3173*(fl) + 9.3881*(ac) 

1 weight = -5685.7848 + 43.1103*(bpd) + 1.4912*(hc) + 17.0387*(fl) + 9.8929*(ac) 

2 weight = -5853.1212 + 39.5619*(bpd) + 2.4174*(hc) + 21.7261*(fl) + 9.5005*(ac) 

3 weight = -6198.2399 + 44.6901*(bpd) + 5.2472*(hc) + 20.4527*(fl) + 6.6325*(ac) 

4 weight = -5941.9821 + 39.9089*(bpd) + 2.6238*(hc) + 23.3260*(fl) + 9.2312*(ac) 

5 weight = -6496.2424 + 44.6131*(bpd) + 3.9980*(hc) + 25.8861*(fl) + 7.7759*(ac) 

6 weight = -5940.9170 + 31.6952*(bpd) + 2.8293*(hc) + 34.1356*(fl) + 9.0107*(ac) 

7 weight = -6296.7603 + 66.8602*(bpd) + 2.7111*(hc) + 16.8848*(fl) + 4.0660*(ac) 

8 weight = -5362.1163 + 35.6642*(bpd) + 4.7398*(hc) + 14.8123*(fl) + 8.2385*(ac) 

9 weight = -5923.3220 + 87.5165*(bpd) + 3.4471*(hc) - 0.2822*(fl) - 0.0753*(ac) 

Table 4 shows ten resulted semi-mixture regression models of SREM 

corresponding to ten testing pairs, given gestational sample. 

Table 4. Ten resulted semi-mixture regression models of SREM given gestational sample.  

Pair Semi-mixture regression model 

0 

{weight = -6651.5534 + 108.5531*(bpd): coeff=0.2721, var=113888.6649}, 

{weight = -4986.7292 + 24.6736*(hc): coeff=0.2041, var=188973.6069}, 

{weight = -4505.6926 + 109.6790*(fl): coeff=0.2450, var=119971.2307}, 

{weight = -3385.5925 + 19.4249*(ac): coeff=0.2788, var=97458.0445} 

1 

{weight = -6802.9586 + 110.3231*(bpd): coeff=0.2700, var=98865.5195}, 

{weight = -5089.2989 + 25.0105*(hc): coeff=0.2012, var=163173.8380}, 

{weight = -4744.7739 + 113.4482*(fl): coeff=0.2426, var=103291.1775}, 

{weight = -3515.6183 + 19.8394*(ac): coeff=0.2862, var=77538.8650} 
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{weight = -6977.8017 + 112.5302*(bpd): coeff=0.2628, var=86798.8614}, 

{weight = -5312.2016 + 25.7209*(hc): coeff=0.2000, var=138635.9025}, 

{weight = -4866.0218 + 115.1670*(fl): coeff=0.2514, var=78089.6011}, 

{weight = -3615.3155 + 20.1265*(ac): coeff=0.2858, var=61080.1223} 

3 

{weight = -7044.9992 + 113.0877*(bpd): coeff=0.2850, var=49040.4530}, 

{weight = -5765.6434 + 27.0933*(hc): coeff=0.2164, var=74811.7832}, 

{weight = -4850.8460 + 114.8885*(fl): coeff=0.2321, var=60022.4336}, 

{weight = -3639.0104 + 20.2068*(ac): coeff=0.2665, var=47595.5654} 

4 

{weight = -7176.0173 + 115.2133*(bpd): coeff=0.2716, var=38495.8850}, 

{weight = -5580.7794 + 26.5639*(hc): coeff=0.1939, var=71575.3627}, 

{weight = -5143.9012 + 119.9590*(fl): coeff=0.2319, var=46756.6663}, 

{weight = -3824.3390 + 20.8679*(ac): coeff=0.3026, var=29724.0337} 

5 

{weight = -7660.3431 + 120.8204*(bpd): coeff=0.2693, var=30819.8738}, 

{weight = -6110.0704 + 28.2196*(hc): coeff=0.2138, var=48373.8766}, 

{weight = -5331.1994 + 122.4455*(fl): coeff=0.2369, var=36807.6503}, 

{weight = -3967.5178 + 21.3295*(ac): coeff=0.2800, var=27240.5556} 

6 

{weight = -8097.3745 + 125.7068*(bpd): coeff=0.2302, var=22289.0842}, 

{weight = -7015.6149 + 31.3566*(hc): coeff=0.2103, var=28635.3775}, 

{weight = -5480.6406 + 125.3284*(fl): coeff=0.2674, var=13952.3164}, 

{weight = -3676.3555 + 20.3238*(ac): coeff=0.2920, var=11540.1306} 

7 

{weight = -7076.9202 + 112.8536*(bpd): coeff=0.3705, var=3375.2380}, 

{weight = -5497.9202 + 26.2185*(hc): coeff=0.1612, var=18787.3282}, 

{weight = -4947.5898 + 117.8865*(fl): coeff=0.2113, var=9967.0914}, 

{weight = -3653.8140 + 20.3827*(ac): coeff=0.2569, var=8618.4241} 

8 

{weight = -7018.2030 + 112.6524*(bpd): coeff=0.2678, var=3654.3436}, 

{weight = -5235.5481 + 25.2899*(hc): coeff=0.2162, var=5459.5803}, 

{weight = -5647.3688 + 127.7972*(fl): coeff=0.2054, var=5974.4689}, 

{weight = -3285.2965 + 19.3967*(ac): coeff=0.3106, var=2526.1926} 

9 

{weight = -6350.5284 + 104.5601*(bpd): coeff=0.1787, var=204.7618}, 

{weight = -5140.6601 + 24.4881*(hc): coeff=0.0745, var=1245.6621}, 

{weight = -6791.1342 + 152.4635*(fl): coeff=0.3553, var=68.6443}, 

{weight = -3831.9687 + 21.4992*(ac): coeff=0.3915, var=53.0970} 

In Table 4, each PRM is wrapped in two brackets “{.}”. Notation “coeff” denotes 

mixture coefficient and notation “var” denotes the variance of a PRM. For explanation, 

the 1
th

 regression model is interpreted according to equation (25) as follows: weight = 

0.2700*(-6802.9586 + 110.3231*(bpd)) + 0.2012*(-5089.2989 + 25.0105*(hc)) + 

0.2426*(-4744.7739 + 113.4482*(fl)) + 0.2862*(-3515.6183 + 19.8394*(ac)) = -

5018.02 + 5.6780(ac) + 29.7872(bpd) + 27.5225(fl) + 5.0321(hc). 

Given gestational sample, we compare SREM with REM given with regard to the 

ratio mean absolute error (RMAE) and the number t of iterations. The number t 

reflects speed of an algorithm. The smaller the number t is, the faster the algorithm is. 

Let W = {w1, w2,…, wK} and V = {v1, v2,…, vK} be sets of actual weights and 

estimated weights, respectively. Equation (26) specifies the RMAE metric [23, p. 814]. 

     
 

 
∑|

     

  
|

 

   

 (26) 

The smaller the RMAE is, the more accurate the algorithm is. Table 5 is the 

comparison of REM and SREM with regard to RMAE and t given gestational sample. 

Table 5. Comparison of REM and SREM regarding RMAE and t, given gestational sample. 

Pair 
RMAE 

(REM) 

RMAE 

(SREM) 

t 

(REM) 

t 

(SREM) 

0 0.0711 0.0786 1 2 
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1 0.0722 0.0759 4 4 

2 0.0739 0.0738 6 4 

3 0.0724 0.0720 7 4 

4 0.0746 0.0727 11 5 

5 0.0780 0.0721 18 5 

8 0.0777 0.0745 22 4 

7 0.0709 0.0706 37 5 

8 0.0729 0.0752 112 4 

9 0.0853 0.1147 444 4 

Average 0.0749 0.0780 66.2 4.1 

From Table 5, given gestational sample, SREM is faster than REM according to t 

but the accuracy of REM is better than the accuracy of SREM according to RMAE. 

Note [19], values of paired t-test statistic t0 [1, p. 376] of RMAE for REM and SREM 

are 5.3294 and 6.4541, respectively. Because all these values are larger than the 

percentage point t0.05,8 = 1.860 [1, p. 711] given significant level 95%, the resistance 

of REM and SREM to missing values given gestational sample is proved. 

We continue to test SREM with CCPP sample. Table 6 shows ten testing pairs of 

CCPP sample. 

Table 6. Ten testing pairs of CCPP sample.  

Pair Training dataset Testing dataset Loss ratio 

0 CCPP.sample.base CCPP.sample.test 0% 

1 CCPP.sample.base.0.1.miss CCPP.sample.test 10% 

2 CCPP.sample.base.0.2.miss CCPP.sample.test 20% 

3 CCPP.sample.base.0.3.miss CCPP.sample.test 30% 

4 CCPP.sample.base.0.4.miss CCPP.sample.test 40% 

5 CCPP.sample.base.0.5.miss CCPP.sample.test 50% 

6 CCPP.sample.base.0.6.miss CCPP.sample.test 60% 

7 CCPP.sample.base.0.7.miss CCPP.sample.test 70% 

8 CCPP.sample.base.0.8.miss CCPP.sample.test 80% 

9 CCPP.sample.base.0.9.miss CCPP.sample.test 90% 

Table 7 shows ten resulted regression models of REM corresponding to ten testing 

pairs, given CCPP sample. 

Table 7. Ten resulted regression models of REM given CCPP sample. 

Pair Regression model 

0 PE = 469.7296 - 1.9885*(AT) - 0.2332*(V) + 0.0474*(AP) - 0.1602*(RH) 

1 PE = 415.9687 - 1.9131*(AT) - 0.2579*(V) + 0.0979*(AP) - 0.1272*(RH) 

2 PE = 416.5671 - 1.8401*(AT) - 0.2940*(V) + 0.0963*(AP) - 0.1047*(RH) 

3 PE = 401.8042 - 1.8324*(AT) - 0.2999*(V) + 0.1099*(AP) - 0.0869*(RH) 

4 PE = 369.4165 - 1.7559*(AT) - 0.3281*(V) + 0.1410*(AP) - 0.0789*(RH) 

5 PE = 346.6202 - 1.7208*(AT) - 0.3237*(V) + 0.1615*(AP) - 0.0633*(RH) 

6 PE = 341.1562 - 1.6900*(AT) - 0.3300*(V) + 0.1647*(AP) - 0.0383*(RH) 

7 PE = 346.4257 - 1.6501*(AT) - 0.3776*(V) + 0.1618*(AP) - 0.0467*(RH) 

8 PE = 302.7665 - 1.5758*(AT) - 0.3174*(V) + 0.1942*(AP) + 0.0391*(RH) 

9 PE = 564.1434 - 2.1327*(AT) + 0.0188*(V) - 0.0684*(AP) + 0.0205*(RH) 

Table 8 shows ten resulted semi-mixture regression models of SREM 

corresponding to ten testing pairs, given CCPP sample. 

Table 8. Ten resulted semi-mixture regression models of SREM given CCPP sample.  

Pair Semi-mixture regression model 

0 {PE = 497.0645 - 2.1763*(AT): coeff=0.4227, var=29.6573}, 
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{PE = 517.8105 - 1.1672*(V): coeff=0.2769, var=71.6045}, 

{PE = -1058.5211 + 1.4933*(AP): coeff=0.1597, var=211.5011}, 

{PE = 421.6716 + 0.4486*(RH): coeff=0.1406, var=248.4670} 

1 

{PE = 497.4977 - 2.1979*(AT): coeff=0.4280, var=24.2516}, 

{PE = 519.3656 - 1.1965*(V): coeff=0.2768, var=60.5493}, 

{PE = -1214.8271 + 1.6475*(AP): coeff=0.1584, var=180.1064}, 

{PE = 417.8420 + 0.5020*(RH): coeff=0.1368, var=217.2895} 

2 

{PE = 497.6871 - 2.2081*(AT): coeff=0.4291, var=20.0817}, 

{PE = 520.7027 - 1.2180*(V): coeff=0.2841, var=48.7344}, 

{PE = -1304.3280 + 1.7359*(AP): coeff=0.1541, var=157.6827}, 

{PE = 413.7453 + 0.5563*(RH): coeff=0.1327, var=189.0623} 

3 

{PE = 498.5778 - 2.2479*(AT): coeff=0.4453, var=13.8541}, 

{PE = 522.2781 - 1.2467*(V): coeff=0.2830, var=37.3203}, 

{PE = -1512.8163 + 1.9414*(AP): coeff=0.1472, var=128.9238}, 

{PE = 405.7745 + 0.6610*(RH): coeff=0.1245, var=156.3326} 

4 

{PE = 498.5320 - 2.2546*(AT): coeff=0.4335, var=10.5627}, 

{PE = 523.8185 - 1.2793*(V): coeff=0.2961, var=26.0347}, 

{PE = -1714.4568 + 2.1407*(AP): coeff=0.1511, var=91.7893}, 

{PE = 401.0777 + 0.7325*(RH): coeff=0.1192, var=123.9264} 

5 

{PE = 498.4271 - 2.2470*(AT): coeff=0.4353, var=7.9534}, 

{PE = 523.2183 - 1.2717*(V): coeff=0.2939, var=19.5630}, 

{PE = -1857.9068 + 2.2820*(AP): coeff=0.1528, var=67.4559}, 

{PE = 392.9270 + 0.8393*(RH): coeff=0.1181, var=90.1255} 

6 

{PE = 498.0319 - 2.2315*(AT): coeff=0.4395, var=5.0596}, 

{PE = 524.2077 - 1.2912*(V): coeff=0.2861, var=13.3621}, 

{PE = -1963.7000 + 2.3864*(AP): coeff=0.1552, var=42.8344}, 

{PE = 387.3950 + 0.9189*(RH): coeff=0.1192, var=60.0808} 

7 

{PE = 498.3792 - 2.2522*(AT): coeff=0.4358, var=2.9110}, 

{PE = 525.1901 - 1.3086*(V): coeff=0.2879, var=7.2515}, 

{PE = -2134.9587 + 2.5554*(AP): coeff=0.1520, var=23.8247}, 

{PE = 381.4177 + 0.9984*(RH): coeff=0.1243, var=29.7061} 

8 

{PE = 496.4571 - 2.1705*(AT): coeff=0.4590, var=1.1633}, 

{PE = 524.3892 - 1.2790*(V): coeff=0.2884, var=3.3270}, 

{PE = -2349.5928 + 2.7669*(AP): coeff=0.1334, var=12.5737}, 

{PE = 369.4027 + 1.1507*(RH): coeff=0.1192, var=16.3293} 

9 

{PE = 497.3288 - 2.1356*(AT): coeff=0.5466, var=0.1691}, 

{PE = 532.0547 - 1.4489*(V): coeff=0.2210, var=1.0673}, 

{PE = -2537.2255 + 2.9526*(AP): coeff=0.1349, var=2.7906}, 

{PE = 369.2398 + 1.1183*(RH): coeff=0.0975, var=4.1247} 

In Table 8, each PRM is wrapped in two brackets “{.}”. Notation “coeff” denotes 

mixture coefficient and notation “var” denotes the variance of a PRM. 

Table 9 is the comparison of REM and SREM with regard to RMAE and t given 

CCPP sample. 

Table 9. Comparison of REM and SREM regarding RMAE and t, given CCPP sample. 

Pair 
RMAE 

(REM) 

RMAE 

(SREM) 

t 

(REM) 

t 

(SREM) 

0 0.0081 0.0123 1 2 

1 0.0081 0.0119 5 5 

2 0.0081 0.0116 10 7 

3 0.0082 0.0111 27 8 

4 0.0082 0.0109 23 10 

5 0.0083 0.0109 68 10 

8 0.0084 0.0109 994 9 

7 0.0084 0.0109 47 8 
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8 0.0089 0.0110 90 13 

9 0.0101 0.0104 1780 23 

Average 0.0085 0.0112 304.5 9.5 

From Table 9, given CCPP sample, SREM is faster than REM according to t but the 

accuracy of REM is better than the accuracy of SREM according to RMAE. Note [19], 

values of paired t-test statistic t0 [1, p. 376] of RMAE for REM and SREM are 6.1786 

and 5.9070, respectively. Because all these values are larger than the percentage point 

t0.05,8 = 1.860 [1, p. 711] given significant level 95%, the resistance of REM and 

SREM to missing values given CCPP sample is proved. 

From experimental results of both gestational sample and CCPP sample, the 

convergence of SREM is always faster than the convergence of REM because SREM 

decomposes a long regression model into many shorter regression models. In 

optimization process of SREM, of course each short model with only one independent 

variable in two-dimension space will converge faster than the long model because the 

long model needs much more iterations to reach and balance the optimal point 

(optimizer) in multi-dimension space with many independent variables. 

4. Conclusions 

From the number of iterations, we conclude that SREM converges faster than REM 

does. According to RMAE metric, the accuracy of REM is better than the accuracy of 

REM but their distance in accuracy is not large. Moreover, the number of PRMs in 

fair tests is equal to the number of regressors and each PRM has only one regressor. If 

the number of PRMs is large enough and each PRM has many enough regressors with 

some combination of regressors, SREM may be better than REM. Note, Bayesian 

Information Criterion (BIC) was proposed to estimate the number of PRMs in [11, p. 

5]. This may be true but finding the optimal number of PRMs and regressors for 

SREM is not a methodological ideology because the essence of SREM is 

decomposition of REM. Therefore, for further research, we will modify SREM so that 

it implements fully mixture model in which both mixture coefficients ck and 

regression coefficients αk are estimated by normal mixture model and balance process 

(estimation of missing values) of REM. We expect that taking advantages of both 

mixture model and REM via iterative process will result out better estimation at least 

in the case that incomplete data varies in many trends. 

In general, the combination of REM and mixture model like SREM is potential. The 

website of REM and SREM is http://rem.locnguyen.net. 

Conflicts of Interest 

The authors declare that there is no conflict of interest regarding the publication of 

this article. 

Acknowledgments 

We express our deep gratitude to Prof. Dr. Thu-Hang Thi Ho (Vinh Long General 

Hospital – Vietnam) who provided us the gestation sample of ultrasound measures 

and fetal weights for testing REM and SREM. Prof. Dr. Thu-Hang Thi Ho is also the 

co-author of REM algorithm in the previous research “Fetal Weight Estimation in 

Case of Missing Data” [3]. We also express our deep gratitude to Prof. Bich-Ngoc 

Tran who gave us comments relevant to one-way paired t-test for evaluating the 

resistance of REM and SREM to missing values. 



VOLUME 1, 2019 

DOI: 10.31058/j.adp.2019.11001 

Submitted to Adaptation and Personalization, page 17-20                                              http://www.itspoa.com/journal/adp 

Appendix 

A1. Proof of equation (19) 

The joint probability of data X and data Z for each k
th

 PRM is defined as follows: 

  (   |     
     )    ( |       

 )  (  |     ) 

When X, Xj, and Z are specified in equation (16), we have: 
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(Because all zi are mutually independent given Xi and all xij with fixed j are 

mutually independent given zi) 
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(Due to equations (13) and (15)) 

The log-likelihood function is natural logarithm of the joint probability Pk(X, Z|αk, 

σk
2
, βkj) as follows: 
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The optimal estimate (αk
*
, (σk

2
)
*
, βkj

*
)
T
  is a maximizer of L(αk, σk

2
, βkj) [17, p. 9]. 

(  
  (  

 )
 
    

 )
 

       
     

     

 (     
     ) 

By taking first-order partial derivatives of L(αk, σk
2
, βkj) with regard to αk, σk

2
, and 

βkj, we obtain [24, p. 34]: 
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When first-order partial derivatives of L(αk, σk
2
, βkj) are equal to zero, it gets local 

maximal. In other words, (αk
*
, (σk

2
)
*
, βkj

*
)

T
 is solution of the following system of 

linear equations: 
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The notation 0 = (0, 0,…, 0)
T
 denotes zero vector. Solution of the system of linear 

equations above is [1, p. 457]: 
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Where X, Xi, Xj, and Z are specified by equation (16). Therefore, the equation (19) 

is established. 
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